T. Mitchison and M. Kirschner, Dynamic instability of microtubule growth, Nature, vol.61, issue.5991, pp.237-242, 1984.
DOI : 10.1038/312237a0

D. Job and R. Margolis, Isolation from bovine brain of a superstable microtubule subpopulation with microtubule seeding activity, Biochemistry, vol.23, issue.13, pp.3025-3031, 1984.
DOI : 10.1021/bi00308a028

P. Baas, T. Slaughter, A. Brown, and M. Black, Microtubule dynamics in axons and dendrites, Journal of Neuroscience Research, vol.97, issue.1, pp.134-153, 1991.
DOI : 10.1002/jnr.490300115

S. Gory-faure, V. Windscheid, C. Bosc, L. Peris, and D. Proietto, STOP-like Protein 21 Is a Novel Member of the STOP Family, Revealing a Golgi Localization of STOP Proteins, Journal of Biological Chemistry, vol.281, issue.38, pp.28387-28396, 2006.
DOI : 10.1074/jbc.M603380200

URL : https://hal.archives-ouvertes.fr/inserm-00380095

E. Denarier, A. Fourest-lieuvin, C. Bosc, F. Pirollet, and A. Chapel, Nonneuronal isoforms of STOP protein are responsible for microtubule cold stability in mammalian fibroblasts, Proceedings of the National Academy of Sciences, vol.95, issue.11, pp.6055-6060, 1998.
DOI : 10.1073/pnas.95.11.6055

L. Guillaud, C. Bosc, A. Fourest-lieuvin, E. Denarier, and F. Pirollet, STOP Proteins are Responsible for the High Degree of Microtubule Stabilization Observed in Neuronal Cells, The Journal of Cell Biology, vol.15, issue.1, pp.167-179, 1998.
DOI : 10.1083/jcb.133.1.151

C. Bosc, J. Cronk, F. Pirollet, D. Watterson, and J. Haiech, Cloning, expression, and properties of the microtubule-stabilizing protein STOP., Proceedings of the National Academy of Sciences, vol.93, issue.5, pp.2125-2130, 1996.
DOI : 10.1073/pnas.93.5.2125

M. Aguezzoul, A. Andrieux, and E. Denarier, Overlap of promoter and coding sequences in the mouse STOP gene (Mtap6)???, Genomics, vol.81, issue.6, pp.623-627, 2003.
DOI : 10.1016/S0888-7543(03)00053-3

A. Couegnas, A. Schweitzer, A. Andrieux, M. Ghandour, and N. Boehm, Expression pattern of stop lacZ reporter gene in adult and developing mouse brain, Journal of Neuroscience Research, vol.3, issue.7, pp.1515-1527, 2007.
DOI : 10.1002/jnr.21278

URL : https://hal.archives-ouvertes.fr/inserm-00379995

M. Galiano, C. Bosc, A. Schweitzer, A. Andrieux, and D. Job, Astrocytes and oligodendrocytes express different STOP protein isoforms, Journal of Neuroscience Research, vol.19, issue.3, pp.329-337, 2004.
DOI : 10.1002/jnr.20260

C. Ochoa, T. Stevens, and R. Balczon, Cold exposure reveals two populations of microtubules in pulmonary endothelia, AJP: Lung Cellular and Molecular Physiology, vol.300, issue.1, pp.132-138, 2010.
DOI : 10.1152/ajplung.00185.2010

E. Denarier, M. Aguezzoul, C. Jolly, C. Vourc-'h, and A. Roure, Genomic Structure and Chromosomal Mapping of the Mouse STOP Gene (Mtap6), Biochemical and Biophysical Research Communications, vol.243, issue.3, pp.791-796, 1998.
DOI : 10.1006/bbrc.1998.8179

C. Bosc, R. Frank, E. Denarier, M. Ronjat, and A. Schweitzer, Identification of Novel Bifunctional Calmodulin-binding and Microtubule-stabilizing Motifs in STOP Proteins, Journal of Biological Chemistry, vol.276, issue.33, pp.30904-30913, 2001.
DOI : 10.1074/jbc.M011614200

J. Baratier, L. Peris, J. Brocard, S. Gory-faure, and F. Dufour, Phosphorylation of Microtubule-associated Protein STOP by Calmodulin Kinase II, Journal of Biological Chemistry, vol.281, issue.28, pp.19561-19569, 2006.
DOI : 10.1074/jbc.M509602200

URL : https://hal.archives-ouvertes.fr/hal-00100341

C. Delphin, D. Bouvier, M. Seggio, E. Couriol, and Y. Saoudi, MAP6-F Is a Temperature Sensor That Directly Binds to and Protects Microtubules from Cold-induced Depolymerization, Journal of Biological Chemistry, vol.287, issue.42, pp.35127-35138, 2012.
DOI : 10.1074/jbc.M112.398339

URL : https://hal.archives-ouvertes.fr/inserm-00734797

Y. Ohno, A. Kihara, T. Sano, and Y. Igarashi, Intracellular localization and tissue-specific distribution of human and yeast DHHC cysteine-rich domain-containing proteins, Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, vol.1761, issue.4, pp.474-483, 2006.
DOI : 10.1016/j.bbalip.2006.03.010

Y. Fukata, T. Iwanaga, and M. Fukata, Systematic screening for palmitoyl transferase activity of the DHHC protein family in mammalian cells, Methods, vol.40, issue.2, pp.177-182, 2006.
DOI : 10.1016/j.ymeth.2006.05.015

M. Linder and R. Deschenes, Palmitoylation: policing protein stability and traffic, Nature Reviews Molecular Cell Biology, vol.174, issue.1, pp.74-84, 2007.
DOI : 10.1038/nrm2084

M. Fukata, Y. Fukata, H. Adesnik, R. Nicoll, and D. Bredt, Identification of PSD-95 Palmitoylating Enzymes, Neuron, vol.44, issue.6, pp.987-996, 2004.
DOI : 10.1016/j.neuron.2004.12.005

L. Selig, S. Benichou, M. Rogel, L. Wu, and M. Vodicka, Uracil DNA glycosylase specifically interacts with Vpr of both human immunodeficiency virus type 1 and simian immunodeficiency virus of sooty mangabeys, but binding does not correlate with cell cycle arrest, J Virol, vol.71, pp.4842-4846, 1997.

P. Bartel, C. Chien, R. Sternglanz, and S. Fields, Elimination of false positives that arise in using the two-hybrid system, Biotechniques, vol.14, pp.920-924, 1993.

J. Wehland and M. Willingham, A rat monoclonal antibody reacting specifically with the tyrosylated form of alpha-tubulin. II. Effects on cell movement, organization of microtubules, and intermediate filaments, and arrangement of Golgi elements, The Journal of Cell Biology, vol.97, issue.5, pp.1476-1490, 1983.
DOI : 10.1083/jcb.97.5.1476

D. Cruz, S. Parone, P. Gonzalo, P. Bienvenut, W. Tondera et al., SLP-2 interacts with prohibitins in the mitochondrial inner membrane and contributes to their stability, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1783, issue.5, pp.904-911, 2008.
DOI : 10.1016/j.bbamcr.2008.02.006

A. Jourdain, M. Koppen, M. Wydro, C. Rodley, and R. Lightowlers, GRSF1 Regulates RNA Processing in Mitochondrial RNA Granules, Cell Metabolism, vol.17, issue.3, pp.399-410, 2013.
DOI : 10.1016/j.cmet.2013.02.005

F. Pirollet, J. Derancourt, J. Haiech, D. Job, and R. Margolis, Calcium-calmodulin regulated effectors of microtubule stability in bovine brain, Biochemistry, vol.31, issue.37, pp.8849-8855, 1992.
DOI : 10.1021/bi00152a022

G. Evan, G. Lewis, G. Ramsay, and J. Bishop, Isolation of monoclonal antibodies specific for human c-myc proto-oncogene product., Molecular and Cellular Biology, vol.5, issue.12, pp.3610-3616, 1985.
DOI : 10.1128/MCB.5.12.3610

W. Liou, H. Geuze, and J. Slot, Improving structural integrity of cryosections for immunogold labeling, Histochemistry and Cell Biology, vol.39, issue.1, pp.41-58, 1996.
DOI : 10.1007/BF02473201

J. Greaves and L. Chamberlain, DHHC palmitoyl transferases: substrate interactions and (patho)physiology, Trends in Biochemical Sciences, vol.36, issue.5, pp.245-253, 2011.
DOI : 10.1016/j.tibs.2011.01.003

Y. Fukata and M. Fukata, Protein palmitoylation in neuronal development and synaptic plasticity, Nature Reviews Neuroscience, vol.279, issue.3, pp.161-175, 2010.
DOI : 10.1038/nrn2788

P. Horton and K. Nakai, Better prediction of protein cellular localization sites with the k nearest neighbors classifier, Proc Int Conf Intell Syst Mol Biol, vol.5, pp.147-152, 1997.

D. Cruz, S. Xenarios, I. Langridge, J. Vilbois, F. Parone et al., Purification and Proteomic Analysis of the Mouse Liver Mitochondrial Inner Membrane, J Biol Chem, vol.278, pp.41566-41571, 2003.
DOI : 10.1007/978-1-59745-028-7_7

T. Fulga, I. Elson-schwab, V. Khurana, M. Steinhilb, and T. Spires, Abnormal bundling and accumulation of F-actin mediates tau-induced neuronal degeneration in vivo, Nature Cell Biology, vol.165, issue.2, pp.139-148, 2007.
DOI : 10.1172/JCI28769

H. He, X. Wang, R. Pan, D. Wang, and M. Liu, The proline-rich domain of tau plays a role in interactions with actin, BMC Cell Biology, vol.10, issue.1, p.81, 2009.
DOI : 10.1186/1471-2121-10-81

J. Yu and M. Rasenick, Tau associates with actin in differentiating PC12 cells, The FASEB Journal, vol.20, issue.9, pp.1452-1461, 2006.
DOI : 10.1096/fj.05-5206com

G. Farias, J. Munoz, J. Garrido, and R. Maccioni, Tubulin, actin, and tau protein interactions and the study of their macromolecular assemblies, Journal of Cellular Biochemistry, vol.9, issue.2, pp.315-324, 2002.
DOI : 10.1002/jcb.10133

B. Roger, J. Al-bassam, L. Dehmelt, R. Milligan, and S. Halpain, MAP2c, but Not Tau, Binds and Bundles F-Actin via Its Microtubule Binding Domain, Current Biology, vol.14, issue.5, pp.363-371, 2004.
DOI : 10.1016/j.cub.2004.01.058

C. Bouquet, M. Ravaille-veron, F. Propst, and F. Nothias, MAP1B coordinates microtubule and actin filament remodeling in adult mouse Schwann cell tips and DRG neuron growth cones, Molecular and Cellular Neuroscience, vol.36, issue.2, pp.235-247, 2007.
DOI : 10.1016/j.mcn.2007.07.002

URL : https://hal.archives-ouvertes.fr/hal-00181434

J. Noritake, Y. Fukata, T. Iwanaga, N. Hosomi, and R. Tsutsumi, Mobile DHHC palmitoylating enzyme mediates activity-sensitive synaptic targeting of PSD-95, The Journal of Cell Biology, vol.72, issue.1, pp.147-160, 2009.
DOI : 10.1523/JNEUROSCI.2465-07.2007

R. Munton, R. Tweedie-cullen, M. Livingstone-zatchej, F. Weinandy, and M. Waidelich, Qualitative and Quantitative Analyses of Protein Phosphorylation in Naive and Stimulated Mouse Synaptosomal Preparations, Molecular & Cellular Proteomics, vol.6, issue.2, pp.283-293, 2007.
DOI : 10.1074/mcp.M600046-MCP200

D. Cheng, C. Hoogenraad, J. Rush, E. Ramm, and M. Schlager, Relative and Absolute Quantification of Postsynaptic Density Proteome Isolated from Rat Forebrain and Cerebellum, Molecular & Cellular Proteomics, vol.5, issue.6, pp.1158-1170, 2006.
DOI : 10.1074/mcp.D500009-MCP200

M. Collins, H. Husi, L. Yu, J. Brandon, and C. Anderson, Molecular characterization and comparison of the components and multiprotein complexes in the postsynaptic proteome, Journal of Neurochemistry, vol.88, issue.1, pp.16-23, 2006.
DOI : 10.1111/j.1471-4159.2005.03507.x

R. Emes, A. Pocklington, C. Anderson, A. Bayes, and M. Collins, Evolutionary expansion and anatomical specialization of synapse proteome complexity, Nature Neuroscience, vol.20, issue.7, p.799, 2008.
DOI : 10.1002/cne.21246

J. Barth and W. Volknandt, Proteomic investigations of the synaptic vesicle interactome, Expert Review of Proteomics, vol.8, issue.2, pp.211-220, 2011.
DOI : 10.1586/epr.11.7

G. Gorini, O. Ponomareva, K. Shores, M. Person, and R. Harris, channels: Proteomics analysis of synaptic protein complexes, FEBS Letters, vol.1152, issue.5, pp.845-851, 2010.
DOI : 10.1016/j.febslet.2009.12.061

A. Levy, V. Devignot, Y. Fukata, M. Fukata, and A. Sobel, Subcellular Golgi localization of stathmin family proteins is promoted by a specific set of DHHC palmitoyl transferases, Molecular Biology of the Cell, vol.22, issue.11, pp.1930-1942, 2011.
DOI : 10.1091/mbc.E10-10-0824

D. Johnson, R. Harris, S. French, P. Blair, and J. You, Tissue heterogeneity of the mammalian mitochondrial proteome, AJP: Cell Physiology, vol.292, issue.2, pp.689-697, 2007.
DOI : 10.1152/ajpcell.00108.2006

N. Deng, J. Zhang, C. Zong, Y. Wang, and H. Lu, Phosphoproteome Analysis Reveals Regulatory Sites in Major Pathways of Cardiac Mitochondria, Molecular & Cellular Proteomics, vol.10, issue.2, pp.110-000117, 2011.
DOI : 10.1074/mcp.M110.000117

S. Chauvin, F. Poulain, S. Ozon, and A. Sobel, Palmitoylation of stathmin family proteins domain A controls Golgi vs mitochondrial subcellular targeting, Biol Cell, 2008.

E. Brenner, U. Sonnewald, A. Schweitzer, A. Andrieux, and A. Nehlig, Hypoglutamatergic activity in the STOP knockout mouse: A potential model for chronic untreated schizophrenia, Journal of Neuroscience Research, vol.18, issue.15, pp.3487-3493, 2007.
DOI : 10.1002/jnr.21200

URL : https://hal.archives-ouvertes.fr/inserm-00379976

J. Arama, A. Boulay, C. Bosc, C. Delphin, and D. Loew, Bmcc1s, a Novel Brain-Isoform of Bmcc1, Affects Cell Morphology by Regulating MAP6/STOP Functions, PLoS ONE, vol.4, issue.4, p.35488, 2012.
DOI : 10.1371/journal.pone.0035488.s006

URL : https://hal.archives-ouvertes.fr/inserm-00734621

A. Boulay, S. Burbassi, H. Lorenzo, D. Loew, and P. Ezan, Bmcc1s interacts with the phosphate-activated glutaminase in the brain, Biochimie, vol.95, issue.4, pp.799-807, 2013.
DOI : 10.1016/j.biochi.2012.11.016

C. Chu, H. Bayir, and V. Kagan, LC3 binds externalized cardiolipin on injured mitochondria to signal mitophagy in neurons, Autophagy, vol.10, issue.2, 2013.
DOI : 10.4161/auto.27191

M. Manczak and P. Reddy, Abnormal interaction of VDAC1 with amyloid beta and phosphorylated tau causes mitochondrial dysfunction in Alzheimer's disease, Human Molecular Genetics, vol.21, issue.23, pp.5131-5146, 2012.
DOI : 10.1093/hmg/dds360

M. Manczak and P. Reddy, Abnormal interaction between the mitochondrial fission protein Drp1 and hyperphosphorylated tau in Alzheimer's disease neurons: implications for mitochondrial dysfunction and neuronal damage, Human Molecular Genetics, vol.21, issue.11, pp.2538-2547, 2012.
DOI : 10.1093/hmg/dds072

G. Amadoro, V. Corsetti, A. A. Florenzano, F. Capsoni, and S. , Interaction between NH(2)- tau fragment and Abeta in Alzheimer's disease mitochondria contributes to the synaptic deterioration, Neurobiol Aging, vol.33, pp.833-831, 2012.

B. Duboff, J. Gotz, and M. Feany, Tau Promotes Neurodegeneration via DRP1 Mislocalization In??Vivo, Neuron, vol.75, issue.4, pp.618-632, 2012.
DOI : 10.1016/j.neuron.2012.06.026

K. Rosenberg, J. Ross, H. Feinstein, S. Feinstein, and J. Israelachvili, Complementary dimerization of microtubule-associated tau protein: Implications for microtubule bundling and tau-mediated pathogenesis, Proceedings of the National Academy of Sciences, vol.105, issue.21, pp.7445-7450, 2008.
DOI : 10.1073/pnas.0802036105

V. Makrides, T. Shen, R. Bhatia, B. Smith, and J. Thimm, Microtubule-dependent Oligomerization of Tau: IMPLICATIONS FOR PHYSIOLOGICAL TAU FUNCTION AND TAUOPATHIES, Journal of Biological Chemistry, vol.278, issue.35, pp.33298-33304, 2003.
DOI : 10.1074/jbc.M305207200