A. Cowman and B. Crabb, Invasion of Red Blood Cells by Malaria Parasites, Cell, vol.124, issue.4, pp.755-766, 2006.
DOI : 10.1016/j.cell.2006.02.006

D. Gaur and C. Chitnis, Molecular interactions and signaling mechanisms during erythrocyte invasion by malaria parasites, Current Opinion in Microbiology, vol.14, issue.4, pp.422-428, 2011.
DOI : 10.1016/j.mib.2011.07.018

P. Sharma and C. Chitnis, Key molecular events during host cell invasion by Apicomplexan pathogens, Current Opinion in Microbiology, vol.16, issue.4, pp.432-437, 2013.
DOI : 10.1016/j.mib.2013.07.004

J. Baum, A complete molecular understanding of malaria parasite invasion of the human erythrocyte: Are we there yet?, Pathogens and Global Health, vol.107, issue.3, pp.107-110, 2013.
DOI : 10.1179/2047772413Z.000000000121

S. Singh, M. Alam, I. Pal-bhowmik, J. Brzostowski, and C. Chitnis, Distinct External Signals Trigger Sequential Release of Apical Organelles during Erythrocyte Invasion by Malaria Parasites, PLoS Pathogens, vol.28, issue.2, p.1000746, 2010.
DOI : 10.1371/journal.ppat.1000746.s016

F. Siddiqui, S. Dhawan, S. Singh, B. Singh, and P. Gupta, mediates erythrocyte invasion, Cellular Microbiology, vol.20, issue.8, pp.1341-56, 2013.
DOI : 10.1111/cmi.12118

C. Kim, N. Xuong, and S. Taylor, Crystal Structure of a Complex Between the Catalytic and Regulatory (RI??) Subunits of PKA, Science, vol.307, issue.5710, pp.690-696, 2005.
DOI : 10.1126/science.1104607

L. Read and R. Mikkelsen, Cyclic AMP- and Ca2+-dependent protein kinases in Plasmodium falciparum, Experimental Parasitology, vol.71, issue.1, pp.39-48, 1990.
DOI : 10.1016/0014-4894(90)90006-X

C. Syin, D. Parzy, F. Traincard, I. Boccaccio, and M. Joshi, development in infected erythrocytes, European Journal of Biochemistry, vol.271, issue.18, pp.4842-4849, 2001.
DOI : 10.1046/j.1432-1327.2001.02403.x

J. Li and L. Cox, Isolation and characterisation of a cAMP-dependent protein kinase catalytic subunit gene from Plasmodium falciparum, Molecular and Biochemical Parasitology, vol.109, issue.2, pp.157-163, 2000.
DOI : 10.1016/S0166-6851(00)00242-5

A. Merckx, M. Nivez, G. Bouyer, P. Alano, and G. Langsley, Plasmodium falciparum Regulatory Subunit of cAMP-Dependent PKA and Anion Channel Conductance, PLoS Pathogens, vol.114, issue.2, p.19, 2008.
DOI : 10.1371/journal.ppat.0040019.sg002

URL : https://hal.archives-ouvertes.fr/hal-00356490

N. Haste, H. Talabani, A. Doo, A. Merckx, and G. Langsley, Exploring the Plasmodium falciparum cyclic-adenosine monophosphate (cAMP)-dependent protein kinase (PfPKA) as a therapeutic target, Microbes and Infection, vol.14, issue.10, pp.838-850, 2012.
DOI : 10.1016/j.micinf.2012.05.004

H. Kurokawa, K. Kato, T. Iwanaga, T. Sugi, and A. Sudo, Identification of Toxoplasma gondii cAMP Dependent Protein Kinase and Its Role in the Tachyzoite Growth, PLoS ONE, vol.33, issue.7, 2011.
DOI : 10.1371/journal.pone.0022492.g007

L. Kirkman, L. Weiss, and K. Kim, Cyclic Nucleotide Signaling in Toxoplasma gondii Bradyzoite Differentiation, Infection and Immunity, vol.69, issue.1, pp.148-53, 2001.
DOI : 10.1128/IAI.69.1.148-153.2001

M. Eaton, L. Weiss, and K. Kim, Cyclic nucleotide kinases and tachyzoite???bradyzoite transition in Toxoplasma gondii, International Journal for Parasitology, vol.36, issue.1, pp.107-121, 2006.
DOI : 10.1016/j.ijpara.2005.08.014

A. Hartmann, R. Arroyo-olarte, K. Imkeller, P. Hegemann, and R. Lucius, Optogenetic Modulation of an Adenylate Cyclase in Toxoplasma gondii Demonstrates a Requirement of the Parasite cAMP for Host-Cell Invasion and Stage Differentiation, Journal of Biological Chemistry, vol.288, issue.19, pp.13705-13722, 2013.
DOI : 10.1074/jbc.M113.465583

M. Gloerich and J. Bos, Epac: Defining a New Mechanism for cAMP Action, Annual Review of Pharmacology and Toxicology, vol.50, issue.1, pp.355-375, 2010.
DOI : 10.1146/annurev.pharmtox.010909.105714

J. Weber, A. Vishnyakov, K. Hambach, A. Schultz, and J. Schiltz, Adenylyl cyclases from Plasmodium, Paramecium and Tetrahymena are novel ion channel/enzyme fusion proteins, Cellular Signalling, vol.16, issue.1, pp.115-125, 2004.
DOI : 10.1016/S0898-6568(03)00129-3

E. Salazar, E. Bank, N. Ramsey, K. Hess, and D. Deitsch, Characterization of Plasmodium falciparum Adenylyl Cyclase-?? and Its Role in Erythrocytic Stage Parasites, PLoS ONE, vol.160, issue.6, p.39769, 2012.
DOI : 10.1371/journal.pone.0039769.s005

T. Ono, L. Cabrita-santos, R. Leitao, E. Bettiol, and L. Purcell, Adenylyl Cyclase ?? and cAMP Signaling Mediate Plasmodium Sporozoite Apical Regulated Exocytosis and Hepatocyte Infection, PLoS Pathogens, vol.35, issue.2, p.1000008, 2008.
DOI : 10.1371/journal.ppat.1000008.s004

URL : http://doi.org/10.1371/journal.ppat.1000008

B. Chandra, A. Olivieri, F. Silvestrini, P. Alano, and A. Sharma, Biochemical characterization of the two nucleosome assembly proteins from Plasmodium falciparum, Molecular and Biochemical Parasitology, vol.142, issue.2, pp.237-284, 2005.
DOI : 10.1016/j.molbiopara.2005.04.006

S. Howell, C. Withers-martinez, C. Kocken, A. Thomas, and M. Blackman, Proteolytic Processing and Primary Structure of Plasmodium falciparum Apical Membrane Antigen-1, Journal of Biological Chemistry, vol.276, issue.33, pp.31311-31331, 2001.
DOI : 10.1074/jbc.M103076200

J. Beavo, N. Rogers, O. Crofford, J. Hardman, E. Sutherland et al., Effects of xanthine derivatives on lipolysis and on adenosine 3',5'-monophosphate phosphodiesterase activity, Mol Pharmacol, vol.6, pp.597-603, 1970.

Y. Chen, M. Cann, T. Litvin, V. Iourgenko, and M. Sinclair, Soluble Adenylyl Cyclase as an Evolutionarily Conserved Bicarbonate Sensor, Science, vol.289, issue.5479, pp.625-628, 2000.
DOI : 10.1126/science.289.5479.625

M. Cann, A. Hammer, J. Zhou, and T. Kanacher, A Defined Subset of Adenylyl Cyclases Is Regulated by Bicarbonate Ion, Journal of Biological Chemistry, vol.278, issue.37, pp.35033-35038, 2003.
DOI : 10.1074/jbc.M303025200

M. Kobayashi, J. Buck, and L. Levin, Conservation of functional domain structure in bicarbonate-regulated ?soluble? adenylyl cyclases in bacteria and eukaryotes, Development Genes and Evolution, vol.214, pp.503-509, 2004.
DOI : 10.1007/s00427-004-0432-2

S. Lindskog, Structure and mechanism of carbonic anhydrase, Pharmacology & Therapeutics, vol.74, issue.1, pp.1-20, 1997.
DOI : 10.1016/S0163-7258(96)00198-2

J. Krungkrai, S. Krungkrai, and C. Supuran, Carbonic anhydrase inhibitors: Inhibition of Plasmodium falciparum carbonic anhydrase with aromatic/heterocyclic sulfonamides???in vitro and in vivo studies, Bioorganic & Medicinal Chemistry Letters, vol.18, issue.20, pp.5466-5474, 2008.
DOI : 10.1016/j.bmcl.2008.09.030

J. Krungkrai and C. Supuran, The Alpha-Carbonic Anhydrase from the Malaria Parasite and its Inhibition, Current Pharmaceutical Design, vol.14, issue.7, pp.631-640, 2008.
DOI : 10.2174/138161208783877901

T. Rink, R. Tsien, and T. Pozzan, Cytoplasmic pH and free Mg2+ in lymphocytes, The Journal of Cell Biology, vol.95, issue.1, pp.189-96, 1982.
DOI : 10.1083/jcb.95.1.189

L. Borodinsky and N. Spitzer, Second Messenger Pas de Deux: The Coordinated Dance Between Calcium and cAMP, Science Signaling, vol.2006, issue.336, p.22, 2006.
DOI : 10.1126/stke.3362006pe22

K. Hoque, O. Woodword, D. Rossum, N. Zachos, and L. Chen, Epac1 mediates protein kinase A???independent mechanism of forskolin-activated intestinal chloride secretion, The Journal of General Physiology, vol.252, issue.1, pp.43-58, 2009.
DOI : 10.1152/ajprenal.00411.2005

G. Purves, T. Kamishima, L. Davies, J. Quayle, and C. Dart, Exchange protein activated by AMP (Epac) mediates cAMP-dependent but protein kinase A-insensitive modulation of vascular ATP-sensitive potassium channels, 2009.

J. Enserink, A. Christensen, J. De-rooij, M. Van-triest, and F. Schwede, A novel Epac-specific cAMP analogue demonstrates independent regulation of Rap1 and ERK, Nature Cell Biology, vol.21, issue.11, pp.901-907, 2002.
DOI : 10.1038/sj.onc.1201005

M. Almahariq, T. Tsalkova, F. Mei, H. Chen, and J. Zhou, A Novel EPAC-Specific Inhibitor Suppresses Pancreatic Cancer Cell Migration and Invasion, Molecular Pharmacology, vol.83, issue.1, pp.122-130, 2013.
DOI : 10.1124/mol.112.080689

T. Tsalkova, F. Mei, S. Li, O. Chepurny, and C. Leech, Isoform-specific antagonists of exchange proteins directly activated by cAMP, Proceedings of the National Academy of Sciences, vol.109, issue.45, pp.18613-18621, 2012.
DOI : 10.1073/pnas.1210209109

A. Vogt, Y. Qian, T. Mcguire, A. Hamilton, and S. Sebti, Protein geranylgeranylation, not farnesylation, is required for the G1 to S phase transition in mouse fibroblasts, Oncogene, vol.13, issue.9, pp.1991-2000, 1996.

D. Chakrabarti, D. Silva, T. Barger, J. Paquette, S. Patel et al., Protein Farnesyltransferase and Protein Prenylation inPlasmodium falciparum, Journal of Biological Chemistry, vol.277, issue.44, pp.42066-73, 2002.
DOI : 10.1074/jbc.M202860200

D. I. Yule, W. , and J. A. , U73122 inhibits Ca2+ oscillations in response to cholecystokinin and carbochol but not to JMV-180 in rat pancreatic acinar cells, J Biol Chem, vol.267, pp.13830-13835, 1992.

K. Leykauf, M. Treeck, P. Gilson, T. Nebl, and T. Braulke, Protein Kinase A Dependent Phosphorylation of Apical Membrane Antigen 1 Plays an Important Role in Erythrocyte Invasion by the Malaria Parasite, PLoS Pathogens, vol.20, issue.6, p.1000941, 2010.
DOI : 10.1371/journal.ppat.1000941.s005

C. Collins, F. Hackett, M. Strath, M. Penzo, and C. Withers-martinez, Malaria Parasite cGMP-dependent Protein Kinase Regulates Blood Stage Merozoite Secretory Organelle Discharge and Egress, PLoS Pathogens, vol.273, issue.5, p.1003344, 2013.
DOI : 10.1371/journal.ppat.1003344.s005

S. Yeoh, O. Donnell, R. Koussis, K. Dluzewski, A. Ansell et al., Subcellular Discharge of a Serine Protease Mediates Release of Invasive Malaria Parasites from Host Erythrocytes, Cell, vol.131, issue.6, pp.1072-1083, 2007.
DOI : 10.1016/j.cell.2007.10.049

S. Agarwal, M. Singh, S. Garg, C. Chitnis, and S. Singh, merozoites, Cellular Microbiology, vol.131, issue.6, pp.910-921, 2012.
DOI : 10.1111/cmi.12086

S. Glushakova, V. Lizunov, P. Blank, K. Melikov, and G. Humphrey, Cytoplasmic free Ca2+ is essential for multiple steps in malaria parasite egress from infected erythrocytes, Malaria Journal, vol.12, issue.1, pp.12-41, 2013.
DOI : 10.1016/S1369-5274(98)80067-2

R. Geahlen and E. Krebs, Regulatory subunit of the type I cAMPdependent protein kinase as an inhibitor and substrate of the cGMP-dependent protein kinase, J Biol Chem, vol.255, pp.1164-1169, 1980.

E. Lasonder, M. Treeck, M. Alam, and A. Tobin, Insights into the Plasmodium falciparum schizont phospho-proteome, Microbes and Infection, vol.14, issue.10, pp.811-819, 2012.
DOI : 10.1016/j.micinf.2012.04.008

X. Gao, K. Gunalan, S. Yap, and P. Preiser, Triggers of key calcium signals during erythrocyte invasion by Plasmodium falciparum, Nature Communications, vol.5, pp.2862-2872, 2013.
DOI : 10.1038/ncomms3862

T. Triglia, M. Duraisingh, R. Good, and A. Cowman, Reticulocyte-binding protein homologue 1 is required for sialic acid-dependent invasion into human erythrocytes by Plasmodium falciparum, Molecular Microbiology, vol.69, issue.1, pp.162-174, 2005.
DOI : 10.1111/j.1365-2958.2004.04388.x

W. Trager and J. Jensen, Human malaria parasites in continuous culture, Science, vol.193, issue.4254, pp.673-675, 1976.
DOI : 10.1126/science.781840

N. Van-der-heyden, G. Benaim, and R. Docampo, epimastigotes, Biochemical Journal, vol.318, issue.1, pp.103-109, 1996.
DOI : 10.1042/bj3180103

S. Singh and C. Chitnis, Flow Cytometry-Based Methods for Measurement of Cytosolic Calcium and Surface Protein Expression in Plasmodium falciparum Merozoites, Methods Mol Biol, vol.923, pp.281-290, 2013.
DOI : 10.1007/978-1-62703-026-7_19

T. Sahar, K. Reddy, M. Bharadwaj, A. Pandey, and S. Singh, Plasmodium falciparum Reticulocyte Binding-Like Homologue Protein 2 (PfRH2) Is a Key Adhesive Molecule Involved in Erythrocyte Invasion, PLoS ONE, vol.15, issue.10, p.17102, 2011.
DOI : 10.1371/journal.pone.0017102.s007