C. Weigert, U. Friess, K. Brodbeck, H. Haring, and E. Schleicher, Glutamine:fructose-6-phosphate aminotransferase enzyme activity is necessary for the induction of TGF-?1 and fibronectin expression in mesangial cells, Diabetologia, vol.46, issue.6, pp.852-857, 2003.
DOI : 10.1007/s00125-003-1122-8

H. Goldberg, C. Whiteside, and I. Fantus, The Hexosamine Pathway Regulates the Plasminogen Activator Inhibitor-1 Gene Promoter and Sp1 Transcriptional Activation through Protein Kinase C-beta I and -delta, Journal of Biological Chemistry, vol.277, issue.37, pp.33833-33874, 2002.
DOI : 10.1074/jbc.M112331200

L. James, D. Tang, A. Ingram, H. Ly, K. Thai et al., Flux Through the Hexosamine Pathway Is a Determinant of Nuclear Factor ??B- Dependent Promoter Activation, Diabetes, vol.51, issue.4, pp.1146-56, 2002.
DOI : 10.2337/diabetes.51.4.1146

K. Yerneni, W. Bai, B. Khan, R. Medford, and R. Natarajan, Hyperglycemia-induced activation of nuclear transcription factor kappaB in vascular smooth muscle cells, Diabetes, vol.48, issue.4, pp.855-64, 1999.
DOI : 10.2337/diabetes.48.4.855

M. Hofmann, S. Schiekofer, M. Kanitz, M. Klevesath, M. Joswig et al., Insufficient Glycemic Control Increases Nuclear Factor-??B Binding Activity in Peripheral Blood Mononuclear Cells Isolated From Patients With Type 1 Diabetes, Diabetes Care, vol.21, issue.8, pp.1310-1316, 1998.
DOI : 10.2337/diacare.21.8.1310

M. Hofmann, S. Schiekofer, B. Isermann, M. Kanitz, M. Henkels et al., Peripheral blood mononuclear cells isolated from patients with diabetic nephropathy show increased activation of the oxidative-stress sensitive transcription factor NF-kB, Diabetologia, vol.42, issue.2, pp.222-3210, 1007.
DOI : 10.1007/s001250051142

M. Brownlee, Biochemistry and molecular cell biology of diabetic complications, Nature, vol.414, issue.6865, pp.813-833, 2001.
DOI : 10.1038/414813a

X. Du, D. Edelstein, L. Rossetti, I. Fantus, H. Goldberg et al., Hyperglycemia-induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by increasing Sp1 glycosylation, Proceedings of the National Academy of Sciences, vol.97, issue.22, pp.12222-12228, 2000.
DOI : 10.1073/pnas.97.22.12222

M. Brownlee, The Pathobiology of Diabetic Complications: A Unifying Mechanism, Diabetes, vol.54, issue.6, pp.1615-1640, 2005.
DOI : 10.2337/diabetes.54.6.1615

R. Sen and D. Baltimore, Inducibility of ?? immunoglobulin enhancer-binding protein NF-??B by a posttranslational mechanism, Cell, vol.47, issue.6, pp.921-929, 1986.
DOI : 10.1016/0092-8674(86)90807-X

R. Sen and D. Baltimore, Multiple nuclear factors interact with the immunoglobulin enhancer sequences, Cell, vol.46, issue.5, pp.705-721, 1986.
DOI : 10.1016/0092-8674(86)90346-6

A. Oeckinghaus and S. Ghosh, The NF-kappaB family of transcription factors and its regulation, Cold Spring Harb Perspect Biol, vol.1, issue.4, 2009.

W. Yang, S. Park, H. Nam, H. Kim-do, J. Kang et al., NF??B activation is associated with its O-GlcNAcylation state under hyperglycemic conditions, Proceedings of the National Academy of Sciences, vol.105, issue.45, pp.17345-50, 2008.
DOI : 10.1073/pnas.0806198105

D. Allison, J. Wamsley, M. Kumar, D. Li, L. Gray et al., Modification of RelA by O-linked N-acetylglucosamine links glucose metabolism to NF-??B acetylation and transcription, Proceedings of the National Academy of Sciences, vol.109, issue.42, pp.16888-93, 2012.
DOI : 10.1073/pnas.1208468109

M. Yuan, N. Konstantopoulos, J. Lee, L. Hansen, Z. Li et al., Reversal of Obesity- and Diet-Induced Insulin Resistance with Salicylates or Targeted Disruption of Ikkbeta, Science, vol.293, issue.5535, pp.1673-1680, 2001.
DOI : 10.1126/science.1061620

D. Cai, M. Yuan, D. Frantz, P. Melendez, L. Hansen et al., Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB

S. Itani, N. Ruderman, F. Schmieder, and G. Boden, Lipid-Induced Insulin Resistance in Human Muscle Is Associated With Changes in Diacylglycerol, Protein Kinase C, and I??B-??, Diabetes, vol.51, issue.7, pp.2005-2016, 2002.
DOI : 10.2337/diabetes.51.7.2005

P. Dandona, A. Aljada, A. Chaudhuri, P. Mohanty, and R. Garg, Metabolic Syndrome: A Comprehensive Perspective Based on Interactions Between Obesity, Diabetes, and Inflammation, Circulation, vol.111, issue.11, pp.1448-54, 2005.
DOI : 10.1161/01.CIR.0000158483.13093.9D

A. Golks, T. Tran, J. Goetschy, and D. Guerini, Requirement for O-linked N-acetylglucosaminyltransferase in lymphocytes activation, The EMBO Journal, vol.1761, issue.20, pp.4368-79, 2007.
DOI : 10.1038/sj.emboj.7601845

P. Ramakrishnan, P. Clark, D. Mason, E. Peters, L. Hsieh-wilson et al., Activation of the transcriptional function of the NF-kappaB protein c-Rel by O-GlcNAc glycosylation, Sci Signal, vol.6, issue.290, 2013.

G. Hart, Nutrient Regulation of Immunity: O-GlcNAcylation Regulates Stimulus-Specific NF-??B-Dependent Transcription, Science Signaling, vol.6, issue.290, 2013.
DOI : 10.1126/scisignal.2004596

K. Kawauchi, K. Araki, K. Tobiume, and N. Tanaka, Loss of p53 enhances catalytic activity of IKK?? through O-linked ??-N-acetyl glucosamine modification, Proceedings of the National Academy of Sciences, vol.106, issue.9, pp.3431-3437, 2009.
DOI : 10.1073/pnas.0813210106

DOI : 10.1097/01.shk.0000245031.31859.29

L. Zou, S. Yang, V. Champattanachai, S. Hu, I. Chaudry et al., Glucosamine improves cardiac function following trauma-hemorrhage by increased protein O-GlcNAcylation and attenuation of NF-{kappa}B signaling

D. Xing, K. Gong, W. Feng, S. Nozell, Y. Chen et al., O-GlcNAc modification of NFkappaB p65 inhibits TNF-alpha-induced inflammatory mediator expression in rat aortic smooth muscle cells, PLoS One, vol.6, issue.8, 2011.

D. Xing, W. Feng, L. Not, A. Miller, Y. Zhang et al., Increased protein O-GlcNAc modification inhibits inflammatory and neointimal responses to acute endoluminal arterial injury, AJP: Heart and Circulatory Physiology, vol.295, issue.1, pp.335-377, 2007.
DOI : 10.1152/ajpheart.01259.2007

R. Hilgers, D. Xing, K. Gong, Y. Chen, J. Chatham et al., Acute O-GlcNAcylation prevents inflammation-induced vascular dysfunction, AJP: Heart and Circulatory Physiology, vol.303, issue.5, pp.513-535, 2011.
DOI : 10.1152/ajpheart.01175.2011

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3468474

H. Xu, G. Barnes, Q. Yang, G. Tan, D. Yang et al., Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance, Journal of Clinical Investigation, vol.112, issue.12
DOI : 10.1172/JCI19451DS1

S. Weisberg, D. Mccann, M. Desai, M. Rosenbaum, R. Leibel et al., Obesity is associated with macrophage accumulation in adipose tissue, Journal of Clinical Investigation, vol.112, issue.12, pp.1796-808, 2003.
DOI : 10.1172/JCI19246DS1

A. Obstfeld, E. Sugaru, M. Thearle, A. Francisco, C. Gayet et al., C-C Chemokine Receptor 2 (CCR2) Regulates the Hepatic Recruitment of Myeloid Cells That Promote Obesity-Induced Hepatic Steatosis, Diabetes, vol.59, issue.4, pp.916-941, 2010.
DOI : 10.2337/db09-1403

J. Ehses, A. Perren, E. Eppler, P. Ribaux, J. Pospisilik et al., Increased Number of Islet-Associated Macrophages in Type 2 Diabetes, Diabetes, vol.56, issue.9, pp.2356-70, 2007.
DOI : 10.2337/db06-1650

E. Eriksson, X. Xie, J. Werr, P. Thoren, and L. Lindbom, Importance of Primary Capture and L-Selectin???Dependent Secondary Capture in Leukocyte Accumulation in Inflammation and Atherosclerosis in Vivo, The Journal of Experimental Medicine, vol.93, issue.2, pp.205-223, 2001.
DOI : 10.1016/S0092-8674(00)81032-6

O. Osborn and J. Olefsky, The cellular and signaling networks linking the immune system and metabolism in disease, Nature Medicine, vol.152, issue.3, pp.363-74, 2012.
DOI : 10.2337/db10-1278

R. Stohr and M. Federici, Insulin resistance and atherosclerosis: convergence between metabolic pathways and inflammatory nodes, Biochemical Journal, vol.124, issue.1, pp.1-11, 2013.
DOI : 10.1016/j.immuni.2011.12.007

N. Shanmugam, M. Reddy, M. Guha, and R. Natarajan, High Glucose-Induced Expression of Proinflammatory Cytokine and Chemokine Genes in Monocytic Cells, Diabetes, vol.52, issue.5, pp.1256-64, 2003.
DOI : 10.2337/diabetes.52.5.1256

M. Dasu, S. Devaraj, L. Zhao, D. Hwang, and I. Jialal, High Glucose Induces Toll-Like Receptor Expression in Human Monocytes: Mechanism of Activation, Diabetes, vol.57, issue.11, pp.3090-3098, 2008.
DOI : 10.2337/db08-0564

K. Hua, S. Wang, W. Dong, C. Lin, C. Ho et al., High glucose increases nitric oxide generation in lipopolysaccharide-activated macrophages by enhancing activity of protein kinase C-alpha/delta and NF-kappaB, Inflamm Res, issue.10, pp.611107-611123, 2012.

M. Donath, Targeting inflammation in the treatment of type 2 diabetes: time to start, Nature Reviews Drug Discovery, vol.1, issue.6, pp.465-76, 2014.
DOI : 10.1016/j.ahj.2011.06.012

W. Ptak, M. Klimek, K. Bryniarski, M. Ptak, and P. Majcher, Macrophage function in alloxan diabetic mice: expression of adhesion molecules, generation of monokines and oxygen and NO radicals, Clinical and Experimental Immunology, vol.15, issue.2, 1998.
DOI : 10.1016/S0092-8674(00)81106-X

Y. Wen, J. Gu, S. Li, M. Reddy, R. Natarajan et al., Elevated Glucose and Diabetes Promote Interleukin-12 Cytokine Gene Expression in Mouse Macrophages, Endocrinology, vol.147, issue.5, pp.2518-25102005, 1210.
DOI : 10.1210/en.2005-0519

C. Sun, L. Sun, H. Ma, J. Peng, Y. Zhen et al., The phenotype and functional alterations of macrophages in mice with hyperglycemia for long term, Journal of Cellular Physiology, vol.2, issue.4, pp.1670-1679, 2012.
DOI : 10.1002/jcp.22891

H. Yamasawa, M. Nakayama, M. Bando, and Y. Sugiyama, Impaired inflammatory responses to multiple Toll-like receptor ligands in alveolar macrophages of streptozotocin-induced diabetic mice, Inflammation Research, vol.48, issue.5, pp.417-443, 2012.
DOI : 10.1007/s00011-011-0426-2

T. Chikanishi, R. Fujiki, W. Hashiba, H. Sekine, A. Yokoyama et al., Glucose-induced expression of MIP-1 genes requires O-GlcNAc transferase in monocytes, Biochemical and Biophysical Research Communications, vol.394, issue.4, pp.865-70, 2010.
DOI : 10.1016/j.bbrc.2010.02.167

S. Hwang, J. Shin, J. Hwang, S. Kim, J. Shin et al., Glucosamine exerts a neuroprotective effect via suppression of inflammation in rat brain ischemia/reperfusion injury, Glia, vol.175, issue.Pt 5, pp.1881-92, 2010.
DOI : 10.1002/glia.21058

S. Hwang, J. Hwang, S. Kim, and I. Han, -GlcNAcylation and p50/p105 binding of c-Rel are dynamically regulated by LPS and glucosamine in BV2 microglia cells, British Journal of Pharmacology, vol.32, issue.7, pp.1551-60, 2013.
DOI : 10.1111/bph.12223

URL : https://hal.archives-ouvertes.fr/hal-00406669

S. Anagnostou and P. Shepherd, Glucose induces an autocrine activation of the Wnt/??-catenin pathway in macrophage cell lines, Biochemical Journal, vol.416, issue.2, pp.211-219, 2008.
DOI : 10.1042/BJ20081426

R. Hresko, H. Heimberg, M. Chi, and M. Mueckler, Glucosamine-induced Insulin Resistance in 3T3-L1 Adipocytes Is Caused by Depletion of Intracellular ATP, Journal of Biological Chemistry, vol.273, issue.32, pp.20658-68, 1998.
DOI : 10.1074/jbc.273.32.20658

H. Kaneto, G. Xu, K. Song, K. Suzuma, S. Bonner-weir et al., Activation of the Hexosamine Pathway Leads to Deterioration of Pancreatic beta -Cell Function through the Induction of Oxidative Stress, Journal of Biological Chemistry, vol.276, issue.33, pp.31099-104, 2001.
DOI : 10.1074/jbc.M104115200

S. Hwang, J. Hwang, S. Kim, and I. Han, O-GlcNAc transferase inhibits LPS-mediated expression of inducible nitric oxide synthase through an increased interaction with mSin3A in RAW264.7 cells, AJP: Cell Physiology, vol.305, issue.6, pp.601-609, 2013.
DOI : 10.1152/ajpcell.00042.2013

I. Ryu and S. Do, Denitrosylation of S-nitrosylated OGT is triggered in LPS-stimulated innate immune response, Biochemical and Biophysical Research Communications, vol.408, issue.1, pp.52-59, 2011.
DOI : 10.1016/j.bbrc.2011.03.115

G. Zheng, C. Yu, and Z. Yang, Puerarin suppresses production of nitric oxide and inducible nitric oxide synthase in lipopolysaccharide-induced N9 microglial cells through regulating MAPK phosphorylation, O-GlcNAcylation and NF-kappaB translocation, Int J Oncol, vol.40, issue.5, pp.1610-1618, 2012.

V. Lima, K. Spitler, H. Choi, R. Webb, and R. Tostes, O-GlcNAcylation and oxidation of proteins: is signalling in the cardiovascular system becoming sweeter?, Clinical Science, vol.1820, issue.8, pp.473-86, 2012.
DOI : 10.1016/j.freeradbiomed.2007.06.014

Z. Ma, D. Vocadlo, and K. Vosseller, Hyper-O-GlcNAcylation Is Anti-apoptotic and Maintains Constitutive NF-??B Activity in Pancreatic Cancer Cells, Journal of Biological Chemistry, vol.288, issue.21, pp.15121-15151, 2013.
DOI : 10.1074/jbc.M113.470047

C. Torres and G. Hart, Topography and polypeptide distribution of terminal Nacetylglucosamine residues on the surfaces of intact lymphocytes. Evidence for O-linked GlcNAc, J Biol Chem, vol.259, issue.5, pp.3308-3325, 1984.

K. Kearse and G. Hart, Lymphocyte activation induces rapid changes in nuclear and cytoplasmic glycoproteins., Proceedings of the National Academy of Sciences, vol.88, issue.5, 1991.
DOI : 10.1073/pnas.88.5.1701