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Abstract

Background: Big data is steadily growing in epidemiology. We explored the performances of methods dedicated

to big data analysis for detecting independent associations between exposures and a health outcome.

Methods: We searched for associations between 303 covariates and influenza infection in 498 subjects (14%

infected) sampled from a dedicated cohort. Independent associations were detected using two data mining

methods, the Random Forests (RF) and the Boosted Regression Trees (BRT); the conventional logistic regression

framework (Univariate Followed by Multivariate Logistic Regression - UFMLR) and the Least Absolute Shrinkage and

Selection Operator (LASSO) with penalty in multivariate logistic regression to achieve a sparse selection of

covariates. We developed permutations tests to assess the statistical significance of associations. We simulated 500

similar sized datasets to estimate the True (TPR) and False (FPR) Positive Rates associated with these methods.

Results: Between 3 and 24 covariates (1%-8%) were identified as associated with influenza infection depending on

the method. The pre-seasonal haemagglutination inhibition antibody titer was the unique covariate selected with

all methods while 266 (87%) covariates were not selected by any method. At 5% nominal significance level, the TPR

were 85% with RF, 80% with BRT, 26% to 49% with UFMLR, 71% to 78% with LASSO. Conversely, the FPR were 4%

with RF and BRT, 9% to 2% with UFMLR, and 9% to 4% with LASSO.

Conclusions: Data mining methods and LASSO should be considered as valuable methods to detect independent

associations in large epidemiologic datasets.
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Background
“Big data” [1] in information science refers to the collec-

tion and management of large and complex datasets.

Big data is steadily growing in biomedicine with the de-

velopment of electronic medical records, increased use

of high-throughput technologies, and facilitated access

to large environmental database [2-6]. In epidemiology,

the collection of hundreds to thousands of covariates is

common in large-scale cohort studies and offers new

challenges for the discovery of associations between in-

dividual or collective exposures and a health outcome.

The use of specific methods to explore these associations,

without any pre-specified hypothesis, therefore becomes

essential.

In hypothesis-driven epidemiology, the search for

associations involves statistical modeling and testing of

the relationships between one or several covariates and

the outcome. Logistic regression is the most widely

used model when the outcome follows a binomial dis-

tribution. The usual epidemiologic analytic framework

consists in testing the association between each covariate

and the outcome through univariate logistic models; a

subset of those covariates is then selected for multivariate

logistic models based on some quantile of the test statistic

for the covariate coefficient under the null hypothesis, i.e.

the Pvalue. This framework is the reference method in

epidemiology for variable selection, and the use of alterna-

tive approaches remains uncommon [7,8]. With large

datasets, the number of covariates selected in the uni-

variate analyses can be high. As multivariate logistic re-

gression can handle a limited number of covariates

simultaneously [9], it might therefore be poorly adapted

to large epidemiologic datasets for identifying inde-

pendent associations.

“Data mining”, a term which appeared in the early

1990’s [10], describes data-driven analysis without any a

priori hypothesis about the structure or the potential

relationships that could exist in the data. Data mining

applications are broad, ranging from consumption ana-

lysis to fraud detection in high-dimensional databases

[11]. Data mining methods are non-parametric, more

flexible than statistical regression methods, and are able to

deal with a large number of covariates. Several studies

have compared the performances of logistic regression

and data mining methods for predicting a health outcome

without clear conclusions about the superiority of one

of these methods over the others [12-17]. Most studies

explored classification and regression trees, artificial

neural networks or linear discriminant analysis, but

only a few focused on more recently developed “ensem-

ble-based” methods such as random forests or boosted

regression trees [13,16,17].

Shrinkage methods, such as the Least Absolute Shrinkage

and Selection Operator (LASSO) [18], have been developed

to overcome the limitation of usual regression models

when the number of covariates is high. However,

LASSO logistic regression remains unfamiliar to epide-

miologists and few applications of this method have

been found [19,20].

We hereby performed a comparison of two data min-

ing methods, random forests and boosted regression

trees, with the conventional multivariate logistic regres-

sion and with the LASSO logistic regression for identi-

fying independent associations in a large epidemiologic

dataset including hundreds of covariates. Random for-

ests and boosted regression trees were chosen among

data mining methods for their ability to provide quanti-

tative information about the strength of association be-

tween covariates and the outcome. The methods were

used to detect covariates associated with H1N1 pan-

demic (pdm) influenza infections. We also assessed the

performance of these methods to detect associations

through simulations.

Methods

Data source

We used data from the CoPanFlu France cohort whose

aim was to study the risk of influenza infection. Briefly,

the cohort includes 601 households randomly selected

between December 2009 and July 2010 and followed

using an active surveillance system in order to detect

influenza-like illness symptoms over two consecutive

influenza seasons (2010–2011 and 2011–2012). More

details about the study protocol, data collection and rep-

resentativeness of households can be found elsewhere

[21]. Ethics approval was given for this study by the

institutional review board “Comité de Protection des

Personnes Ile-de-France 1” and written informed consent

was obtained for all participants.

The outcome of our study was H1N1pdm influenza

infection during 2010–2011 season, defined as either a

positive H1N1pdm RT-PCR [22] or a positive H1N1pdm

RespiFinder assay [23] on a nasal swab collected during

winter 2010–2011 or a seroconversion (4-fold increase

of Haemagglutination inhibition (HAI) antibody titer [24]

between post and pre-seasonal serum samples). Infection

status for the 2010–2011 season was available in house-

hold members from 498 households. To neutralize within

household correlation and ensure statistical independence

of individuals included in the analysis, we adopted a case–

control selection strategy. One case was sampled from

each household where at least one influenza infection was

detected and one control was selected from each house-

hold where no influenza infection occurred. Our analysis

therefore focused on 498 subjects, 68 (14%) cases and

430 controls. Association with the outcome was explored

for 303 covariates (a complete description can be found in

Lapidus et al. [25]).
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The mean age of study subjects was 44.3 years (SD =

21.1); 42% (208 individuals) were male. A total of 215

subjects (43%) had at least one history of chronic

disease. The proportions of seasonal and pandemic

vaccines recipients for 2009–2010 season were 19%

and 10%, respectively. The mean number of subjects

per household was 2.5 (SD = 1.3) and the number of

children per household was 0.5 (SD = 0.9).

Methods for detection of independent associations

Random forests (RF)

Random Forests models were proposed by Leo Breiman

[26]. RF consists of an ensemble of classification and re-

gression trees. Each tree of the random forest is built as

followed: a bootstrap sample of the original dataset is

drawn with replacement. The rest of the observations

compose the “out-of-bag” sample, used to assess the per-

formances of the selected tree. At each node of the tree,

a random subset of covariates is selected (usually as

much as the square root of the total number of covari-

ates). Selection of a covariate to split a “parent” node

into two “child” nodes is the covariate among the subset

leading to the largest decrease in the Gini impurity criter-

ion, that is, for a binary outcome, 1 – p2 – (1 – p)2 with p

the proportion of individuals classified with the outcome

(the influenza infection in our case). The partitioning

process is iterated until the final nodes contain only indi-

viduals belonging to the same classes or until they contain

only one individual. The tree is then used to classify every

individual in the “out-of-bag” sample. This process is re-

peated until a pre-specified number of trees is reached

(one thousand). Note that prediction for each individ-

ual is based on the averaged predictions over all trees.

To rank potential relevant associations with covariates

selected in the RF, we used the importance score, i.e.,

the decrease in Gini impurity criterion from splitting

on the covariate, averaged over all trees.

Boosted regression trees (BRT)

Boosted regression trees is another ensemble method

combining regression trees with weak individual pre-

dictive performances, into a single model with high

performances [27,28].

First a regression tree model is fitted to a subset of data

to minimize a loss function (in our case the deviance),

which quantifies the loss in predictive performance

due to a suboptimal model. The “boosting” algorithm

is a numerical optimization technique for minimizing

the loss function by iteratively fitting new trees to the

prediction residuals of the preceding tree. For example,

at the second step, a tree is fitted to the residuals of the

first tree, and that second tree could contain different

covariates and split nodes compared with the first. The

two regression trees are combined and the residuals

are calculated, a new tree is fitted and so on. To im-

prove accuracy and reduce overfitting, each regression

tree is grown from a bootstrap sample (without re-

placement) of the original dataset (usually 50% of the

original sample) [29]. The final model is built by com-

bining weighted individual tree contributions, weights

being proportional to the trees performances.

To assess and rank potential associations with covari-

ates, we used the Friedman “relative influence” [27], i.e.,

the number of times a covariate is selected for splitting,

weighted by the squared improvement of the loss func-

tion by splitting on that covariate. One thousand trees

were used for each model. To allow complex interaction

detection, the “interaction.depth” parameter of the BRT

models was set to a value of 3; implying models with up

to 3-way interactions.

Conventional logistic regression framework

Logistic regression (LR) is a well-known Generalized

Linear Model adapted to test association between a bi-

nomial outcome and covariates [30]. In order to iden-

tify independent associations, we reproduced the usual

epidemiologic analytic framework – that is, Univariate

Followed by Multivariate Logistic Regression (UFMLR).

We explored two thresholds for the selection of covari-

ates in the univariate step, Pvalue <0.05 (UFMLR05) and

Pvalue <0.20 (UFMLR20), with coefficient tested with the

Wald test. We also distinguished whether or not a back-

ward selection of covariates was further applied in multi-

variate regression model.

Least Absolute Shrinkage and Selection Operator logistic

regression (LASSO)

We used LASSO to fit a multivariate logistic model with

penalty on the magnitude of coefficients. The LASSO

method maximizes the log-likelihood of the model, while

applying constraints on the sum of the absolute values of

the coefficients– shrinking the less important coefficients

to zero [18]. The constraint was expressed in terms of a

penalty parameter; the optimal value of this parameter

was determined by minimizing the deviance of the multi-

variate logistic model (hereafter called LASSO-max) aver-

aged over five-fold cross-validation subsamples [31]. In

addition to this optimal model, we also considered a parsi-

monious LASSO model with a higher penalty parameter

(hereafter called LASSO-se) so that the mean deviance of

the model was within one standard error of the LASSO-

max average deviance [28,32]. To rank potential associa-

tions with covariates, we used the proportion of estimated

non-null parameters over one hundred LASSO models.

Permutation test for statistical significance of associations

No threshold exists to assess the statistical significance of

measures of association, i.e. the Gini impurity criterion in
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RF models or the Friedman relative influence in BRT

models or the proportion of estimated non-null parame-

ters in LASSO models. We used permutation tests [33],

which were applied in RF models to derive Pvalues for

predictors and were suggested to be used with any method

that provides a measure of covariate relevance [34]. The

null hypothesis was the absence of association between a

given covariate and the outcome. We computed the Pva-

lue by randomly permuting 999 times the values of the

outcome and comparing the measures of association of

the covariates in the permuted datasets with that from the

original dataset [35]. Permutation of the outcome has the

advantage of preserving the dependence structure between

the covariates [34]. The one-sided Pvalue was computed

as follows: Px ¼
1þNumber of permuted datasets where Sper>Sobs

1þNumber of permutations
with

Sper and Sobs the measures of association for covariate x in

the permuted and the real dataset, respectively. To in-

crease consistency we also applied this method to UFMLR

models, using the Wald test statistic as measure of associ-

ation. We also checked whether permutation test Pvalues

were similar to those obtained with the conventional Wald

test (see Additional file 1).

Simulated data

To assess the performances of the different methods in

detection of associations in a similar-sized dataset, we sim-

ulated 500 datasets with 500 individuals and 300 covari-

ates, sampled from a multivariate normal distribution (the

simulation process is detailed in Additional file 1). The

simulated logit model involved 150 continuous and

150 binary covariates. Four covariates of each type were

directly associated with the outcome. Four covariates

(2 binary and 2 continuous) were involved in pairwise

multiplicative interactions. Two hundred and ninety-two

covariates were not associated (neither directly nor through

interactions) with the outcome. Twenty covariates (the 8

associated covariates and 12 non-associated covariates - 6

continuous and 6 binary) were correlated (ρ = 0.5). To ex-

plore the influence of correlation among a higher number

of covariates, we increased the number of correlated co-

variates to 58 (the 8 associated covariates and 50 non-

associated covariates – see Additional file 1). For both

simulations, the number of permutations of the outcome

was set to 99. Performances were assessed in terms of

True Positive Rate (TPR), i.e. the proportion of associated

covariates which were detected, and False Positive Rate

(FPR), i.e. the proportion of non-associated covariates

which were detected, at 5% nominal level (see Additional

file 1 for TPR and FPR at 1% nominal level). We also

distinguished between covariates with and without pair-

wise interactions for the calculation of TPR, and be-

tween covariates with and without correlations with

associated covariates for the calculation of FPR.

Fitting procedures and software

In all analyses, the covariates were centered and scaled

prior to model fitting.

Statistical analyses were performed with R version

2.15.3. The following packages were used: “randomForest”

[36] for RF models, “gbm” [37] for BRT models, “glmnet”

[31] for LASSO-LR models.

Results

Detection of associations in the CoPanFlu dataset

With a nominal type I error of 5%, 11 independent asso-

ciations were identified with RF, 12 with BRT, 24 with

the LASSO-max, 8 with the LASSO-se, 3 to 5 with

UFMLR05, and 9 to 10 with UFMLR20 (Table 1). Asso-

ciation between influenza infection and the pre-seasonal

HAI titer was detected with all methods. The covariates

“History of asthma”, “Professional activity involves con-

tact with ill people”, “Daily frequency of hand washing

(with soap or hand sanitizer) ≥ 5” and “Always or often

covers mouth while coughing or sneezing”, were also

identified by RF, BRT, and LASSO-max. This last covari-

ate, as well as 23 additional covariates, were not detected

by any of the UFMLR methods. Three associations iden-

tified by UFMLR20, with or without backward selection,

were not retrieved by any of the data mining or LASSO

methods. Of note, backward selection applied in UFMLR

was associated with more and sometimes different asso-

ciations than UFLMR without selection. Finally, 266

(87%) covariates were not selected by any method.

Simulated data

At 5% nominal level, the True Positive Rate was 85%

with RF, 80% with BRT and 71% to 78% with LASSO

(Table 2). The UFMLR, with or without backward selec-

tion, was the least efficient method at detecting true as-

sociations, with a TPR ranging between 26% and 49%.

All methods, except RF and BRT, exhibited higher TPR

when associated covariates did not interact with other

associated covariates. The TPR for continuous covariates

was higher than the TPR for binary covariates with all

methods. The proportion of simulated datasets in which

all associated covariates were detected was 36% with RF,

17% for BRT, 10% for LASSO-max, 5% for LASSO-se,

0% for UFMLR05 with or without backward selection,

4% and 2% for UFMLR20 with and without backward se-

lection, respectively (Figure 1). UFMLR20 without back-

ward selection detected none of the associated covariates

in 18% of the simulated datasets. Overall, the FPR was

below or equal to the nominal type I error with all

methods except for LASSO-max and UFMLR20 with

backward selection. UFLMR05 without backward selec-

tion was the most conservative with a FPR of 2% (Table 2

and Figure 2). RF, BRT, LASSO methods and UFMLR20

with backward selection suffered from an increase of type
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Table 1 Significant associations with RF, BRT, LASSO and UFMLR

RF BRT LASSO-max LASSO-se UFMLR05 UFMLR05
backward

UFMLR20 UFMLR20
backward

Covariates

Pre-seasonal HAI titer (log) 0.004 0.003 0.001 0.001 0.001 0.002 0.002 0.001

History of asthmab 0.009 0.012 0.001 0.001 0.009 0.019 0.004

Professional activity involves contact with ill peopleb 0.009 0.023 0.008 0.001 0.001

Age (years) 0.004 0.001 0.001 0.001

Daily frequency of hand washing (with soap or
hand sanitizer)≥ 5b

0.014 0.023 0.019 0.008

Always or often covers mouth while coughing or
sneezingb

0.033 0.023 0.003 0.001

“Craftsman, shopkeeper, chief executive officer”
(socio-professional group)b

0.036 0.006 0.047

History of chemotherapyb 0.048 0.021 0.027

Average living room temperature (°C) 0.001 0.001 0.031 0.047 0.002

Presence of a dishwasher in the kitchenb 0.002 0.001 0.048 0.007 0.007

Sex =maleb 0.048

Professional activity is primarily outdoorsb 0.045

Age < 15 yearsb 0.016

Any respiratory diseaseb 0.030

Number of children (<15 years) in the household (n) 0.004

Body mass index (kg/m2) 0.032

Proportion of inhabitants > 15 years without a diploma (in
IRIS zonei)

0.024

Proportion of habitations rented by inhabitants (in IRIS zonei) 0.023

Proportion of habitations owned by inhabitants (in IRIS zonei) 0.049

Habitation = houseb 0.016

Duration of contacts with subjects aged between 60 and
99 years (log (min))

0.006 0.023 0.019

Number of subjects in the household (n) 0.002 0.002

Kitchen surface area per subject (m2) 0.005 0.002

Cardiac arrhythmiab 0.021

History of radiotherapyb 0.016

Daily consumption of green tea (n) 0.040

Number of birds inside habitation (n) 0.030

Number of rooms per subject in habitation (n) 0.009

Number of children in the bedroom (n) 0.010

Bedroom windows face: gardenb 0.010

Duration of contacts at home (log (min)) 0.029

Longitude of the habitation (degrees) 0.027

Latitude of the habitation (degrees) 0.028

Proportion of “farmer, primary sector” (socio-professional
group) (in IRIS zonei)

0.004 0.005

Kitchen filtration of areab 0.021 0.034

Tiles flooring in the kitchenb 0.015 0.029

Agricultural land near habitationb 0.048

bbinary covariate. iIRIS zones are statistical block groups of about 2000 inhabitants defined by the French Institut National de la Statistique et des Etudes

Economiques (INSEE).
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Table 2 Performances of RF, BRT, LASSO and UFMLR in the 500 simulated datasets

n RF BRT LASSO-max LASSO-se UFMLR05 UFMLR05 backward UFMLR20 UFMLR20 backward

Type I error 5%

True Positive Rates (TPR) 8 85% (55% - 100%) 80% (51% - 100%) 78% (52% - 100%) 71% (41% - 100%) 28% (3% - 54%) 45% (20% - 70%) 26% (0% - 65%) 49% (15% - 84%)

Covariates with pairwise
interaction

4 86% (49% - 100%) 80% (41% - 100%) 77% (40% - 100%) 69% (26% - 100%) 24% (0% - 63%) 41% (0% - 83%) 24% (0% - 72%) 46% (0% - 96%)

Covariates without pairwise
interaction

4 84% (46% - 100%) 79% (41% - 100%) 79% (41% - 100%) 73% (32% - 100%) 32% (0% - 74%) 50% (6% - 93%) 28% (0% - 76%) 53% (5% - 100%)

Continuous covariates 4 90% (55% - 100%) 82% (47% - 100%) 82% (49% - 100%) 77% (41% - 100%) 35% (0% - 74%) 49% (15% - 84%) 29% (0% - 76%) 55% (14% - 95%)

Binary covariates 4 80% (34% - 100%) 78% (35% - 100%) 74% (34% - 100%) 64% (20% - 100%) 22% (0% - 57%) 41% (8% - 74%) 23% (0% - 69%) 44% (0% - 90%)

False Positive Rates (FPR) 292 4% (1% - 6%) 4% (2% - 6%) 9% (0% - 17%) 4% (0% - 9%) 2% (1% - 4%) 3% (1% - 5%) 4% (0% - 12%) 9% (0% - 18%)

Covariates correlated with
associated covariates

12 46% (7% - 85%) 33% (3% - 63%) 23% (0% - 48%) 18% (0% - 41%) 4% (0% - 15%) 7% (0% - 22%) 9% (0% - 39%) 19% (0% - 60%)

Covariates uncorrelated
with associated covariates

280 2% (0% - 4%) 3% (1% - 5%) 8% (0% - 17%) 3% (0% - 8%) 2% (1% - 4%) 3% (1% - 4%) 4% (0% - 11%) 8% (0% - 16%)

Continuous covariates 146 3% (0% - 6%) 3% (1% - 6%) 9% (0% - 18%) 4% (0% - 9%) 2% (0% - 5%) 3% (0% - 6%) 5% (0% - 13%) 9% (0% - 18%)

Binary covariates 146 4% (0% - 8%) 5% (2% - 9%) 9% (0% - 18%) 3% (0% - 9%) 2% (0% - 5%) 3% (0% - 5%) 4% (0% - 12%) 9% (0% - 18%)

Performances are shown as: Mean (95% confidence interval).
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I error when the non-associated covariates were correlated

with associated covariates.

When increasing the number of non-associated covari-

ates correlated with associated covariates, the TPR de-

creased with all methods, except for UFMLR20 with

backward selection. The FPR were close to the FPR ob-

served with a lower number of non-associated correlated

covariates, with the exception of UFMLR20 with backward

selection (14%, see Additional file 1).

Discussion
Without any pre-specified hypotheses, Random Forests,

Boosted regression trees and LASSO models identified 8

to 24 covariates independently associated with influenza

infection, among which 23 were not detected by the

“univariate followed by multivariate logistic regression”

framework. On the other hand, when a Pvalue threshold

of 0.20 was applied to select covariates for multivariate lo-

gistic regression during univariate logistic models, a sub-

stantial number of spurious independent associations

were detected which were not retrieved by any other

methods. Simulations showed that RF, BRT and LASSO

outperformed the conventional logistic framework to de-

tect independent associations, while the false positive de-

tection rates remained at the nominal significance level

(RF, BRT and LASSO-se) or moderately increased above it

(LASSO-max).

When covariates not associated with the outcome were

correlated with covariates associated with the outcome,

the false positive rate was high, particularly with RF. For

this method, this finding was explained by the sensitivity

of the Gini impurity criterion to between-covariates cor-

relation [38]. More strikingly, increasing the number of

correlated covariates also affected the true positive rate,

which decreased with almost all methods (see Additional

file 1). This finding may be attributed to a decrease of

covariate strength of association due to a large number

of correlated covariates and consequently, a decrease to

be detected by any of the methods, as was shown in RF

and LASSO [39].

In this work, we used an exploratory approach to

analyze a large epidemiologic dataset, i.e. we aimed to

detect associations between numerous covariates and an

outcome, without pre-specified hypothesis. Despite the

high number of covariates under study, the multiple test-

ing issue was not considered. It is common to distinguish

between two type of error rates: the comparisonwise error

rate (CER) which corresponds to the probability, for an in-

dividual test, to reject the null hypothesis when it is actu-

ally true; and the experimentwise error rate (EER - also

known as the familywise error rate), which corresponds to

Figure 1 Cumulative distribution curves of the True Positive Rates in the 500 simulated datasets. y-axis shows the proportion of simulated

datasets with True Positive Rates above or equal to the True Positive Rates on the x-axis.
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the probability of rejecting at least one true null hy-

pothesis among the multiple tests performed [40]. Ac-

cording to the simulations performed, we observed

that the false positive rates associated to the permuta-

tion test was close to the expected CER level (5%) with

almost all methods. Working at the individual covari-

ate level, no adjustment was necessary. Adjusting Pva-

lues would have been required if the EER had to be

controlled, e.g. in order to build a predictive model or

to confirm the detected associations [41]. It is never-

theless essential to keep in mind that the significant re-

sults correspond to exploratory results, which require

further confirmation.

To our knowledge, our study is the first to compare

the performance in terms of associations detection of

the random forest and boosted regression trees import-

ance measures to the LASSO and the widely used analytic

framework in the simultaneous analysis of hundreds to

thousands of covariates to detect independent associa-

tions, a growing issue in epidemiology. Although such

datasets offer analytic challenges, they are hardly com-

parable to datasets explored in omic-based approaches,

in which the number of covariates (up to millions) is far

higher to the number of samples, and for which the use

of dedicated approaches, e.g. the elastic net penalty [42],

would have been unavoidable.

Some associations with influenza infection detected

with RF, BRT or LASSO-se methods were expected: HAI

titers are well-known correlates of protection against in-

fluenza infection [43], young age is a known risk factor for

H1N1pdm influenza infection [44], non-pharmaceutical

preventive measures such as handwashing have been

found to be determinants of H1N1pdm infection [45], and

asthma was also reported as a specific risk factor [46].

Having a professional activity involving contact with ill

people sounds logical as a potential risk factor, and several

reports have shown that hospital staff were at increased

risk of infection [47]. For other associations, e.g. “Always

or often covers mouth while coughing or sneezing”, we

did not find consistent findings in the literature and it

could be hard to hypothesize how the detected covari-

ates could be linked with the risk of H1N1pdm influ-

enza infection. However, “Professional activity involves

contact with ill people” and age were correlated with

this covariate (ρ = 0.10, Pvalue = 0.020 and ρ = 0.29,

Pvalue < 0.001, respectively); based on our simulation

findings we suspect that this association, as many others

(e.g. “Presence of a dishwasher in the kitchen”), are likely

to be false positives.

Having no prior knowledge about the covariates truly

associated with influenza infections we performed a

simulation study to assess the performances of the

Figure 2 Cumulative distribution curves of the False Positive Rates in the 500 simulated datasets. y-axis shows the proportion of

simulated datasets with False Positive Rates above or equal to the False Positive Rates on the x-axis.
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different methods at detecting true and false associations

in similar sized data, with a similar number of positive

outcomes and covariates. Although we did not perform

an extensive analysis exploring varying proportions of

associated covariates or interactions between covariates,

our simulations clearly demonstrated that UFMLR, with

or without backward selection, were inefficient. We de-

veloped permutation tests to assess the significance of

the covariates association with the outcome in RF, BRT

and LASSO; their results with UFMLR were comparable

to that of the Wald test in terms of nominal coverage

(see Additional file 1). Although permutation tests ex-

hibited slightly less power than the Wald test, this did

not modify our general findings.

Conclusions

The conventional multivariate logistic regression frame-

work is obviously not adapted for exploratory analysis of

large epidemiologic datasets in view of detecting inde-

pendent associations without any pre-specified hypoth-

esis. In this respect, data mining methods and LASSO

should be considered as credible alternatives to multi-

variate logistic regression.

Additional file

Additional file 1: Simulation process description and additional

simulation results. Description of the simulation process; TPR and FPR

at 1% nominal significance level; TPR and FPR with an increased number

of correlated covariates; and comparisons of UFMLR TPR and FPR with

Wald test and permutation test.
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