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Abstract

Background:Corrupted gradient directions (GD) in diffusion weighted images may
seriously affect reliability of diffusion tensor imaging (DTI)-based comparisons at the
group level. In the present study we employed a quality control (QC) algorithm to
eliminate corrupted gradient directions from DTI data. We then assessed effects of
this procedure on comparisons between Huntington disease (HD) subjects and
controls at the group level.

Methods: Sixty-one HD patients in early stages and forty matched healthy controls
were studied in a longitudinal design (baseline and two follow-ups at three time
points over 15 months), in a multicenter setting with similar acquisition protocols on
four different MR scanners at four European study sites. A QC algorithm was used to
identify corrupted GD in DTI data sets. Differences in fractional anisotropy (FA) maps
at the group level with and without elimination of corrupted GD were analyzed.

Results:The elimination of corrupted GD had an impact on individual FA maps as
well as on cross-sectional group comparisons between HD subjects and controls.
Following application of the QC algorithm, less small clusters of FA changes were
observed, compared to the analysis without QC. However, the main pattern of regional
reductions and increases in FA values with and without QC-based elimination of
corrupted GD was unchanged.

Conclusion:An impact on the result patterns of the comparison of FA maps
between HD subjects and controls was observed depending on whether QC-based
elimination of corrupted GD was performed. QC-based elimination of corrupted GD
in DTI scans reduces the risk of type I and type II errors in cross-sectional group
comparison of FA maps contributing to an increase in reliability and stability of
group comparisons.

Keywords:Corrupted raw data, Diffusion tensor imaging, Fractional anisotropy,
Huntington disease, Multicenter study
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Background
Diffusion tensor imaging (DTI) has become increasingly accepted in magnetic reson-

ance (MR) neuroimaging [1,2]. As with other MR modalities, the quality of diffusion
weighted images (DWI) can be affected by a variety of factors, such as acquisition se-

quence, homogeneity of the magnetic field, stability of the gradient amplitude, slew rate

variations, as well as by differences in multichannel radio-frequency coils and parallel
imaging parameters [2]. The acquisition time for DTI is longer than for conventional

MR imaging due to the large number of recorded gradient directions (GD) that are re-
quired. Artifacts in GD may originate from both the acquisition system (such as eddy-

current and vibration artifacts) and the subject scanned, such as cardiac pulsation and
particularly head motion [2,3]. Signal changes produced by these artifacts can be severe

and may eventually result in erroneous diffusion tensor values [4]. In order to detect

artifacts in DTI, quality control (QC) assessment was suggested in previous studies
with a variety of methods [2,4-7]. In 2007, quality assessment was performed by Hasan

[5] using isotropic tensor scans of water phantoms providing a useful framework for
QC and parameter optimization in DTI. In vivo DTI QC was performed by the soft-

ware tool DTIprep [4] which provides a framework for automatic QC by slicewise cor-

relation check. Most recent studies introduced a sophisticated QC method for
detecting bias of Fractional Anisotropy (FA) and the principal direction by a Rician

noise model [2] or suggested an integrative tool for an automatic DTI analysis and
quality assurance pipeline [7]. However, the effect of corrupted volumes within DTI

data sets on the results of comparisons at the group level has not been investigated yet.

The aim of this study was therefore to examine if the application of QC to DTI data,
in combination with strict elimination of corrupted GD, results in differences in group

comparisons of DTI-based metrics compared to using no QC. To this end, we used
data from patients with Huntington disease (HD) who are prone to involuntary move-

ment during a DTI scan. We used data from the PADDINGTON study (Pharmacody-
namic Approaches to Demonstration of Disease-modification in Huntington’s disease

by SEN0014196), a multi-centre study with a total sample size of initially 101 data sets.

In addition, participants underwent MRI three times 6 months apart, which allows val-
idation of the results, i.e., results clusters for comparisons at the group level.

HD is a monogenetic, autosomal dominant neurodegenerative disorder of high pene-
trance characterized by a progressive dysfunction of the basal ganglia, clinically result-

ing in cognitive decline, typically hyperkinetic movement disorder and behavioural

alterations (e.g. apathy, perseveration and irritability). Demonstrating biological alter-
ations during the pre-clinical phase in HD mutation carriers may permit the identifica-

tion of biomarkers, and any modulation of such potential biomarkers by interventions
with therapeutic intent may point to the possible efficacy of experimental therapies.

Therefore, neuroimaging techniques investigating structural and functional properties

of the HD brain may have biomarker potential (for reviews see [8,9]): given the patho-
physiology of HD and its effects on white matter integrity an outstanding representative

of these potential technical biomarkers is DTI.
In the present study, those structures were of particular interest that had been identi-

fied in previous DTI studies in HD: an increase of FA values in the basal ganglia, and

FA reductions in the external and internal capsule, in parts of the thalamus, and in sub-
cortical white matter [10-12]. The present study addresses the investigation of the

Müller et al. BioMedical Engineering OnLine2014,13:128 Page 2 of 15
http://www.biomedical-engineering-online.com/content/13/1/128



impact of QC on DTI data with the exemplary application to HD. We investigated
whether identification and elimination of corrupted GD from cross-sectional data sets

would lead to changes in cross-sectional result patterns. Therefore, the novelty of this
study is to examine if and to which extent disturbances during DTI acquisition had an

effect on DTI-based metrics at the group level. The main question was whether

between-group differences are reliable with or without application of QC, i.e. does the
application of QC have any effect on the results of between-group differences. While

previous studies had investigated the impact of QC on single subject data, we extended
this concept to a study at the group level. Hence, this study is a continuation of previ-

ous QC-studies in DTI [2,4-7] and complements those studies for aspects of QC on
the reliability of between-group statistics.

Methods
Subject scanning

Data in this study were collected in the framework of the European PADDINGTON
project at four study sites in Europe (Leiden, the Netherlands; London, UK; Paris,

France; Ulm, Germany) [13]. The PADDINGTON study is an international initiative

that aims to provide pharmacodynamic approaches for disease-modifying clinical trials.
Work package 2 of this project entails the collection of 3.0TeslaMRI (volumetric and

DTI) scans acquired using similar acquisition protocols from patients with HD in an
early disease stage and from healthy control participants, with the objective of identify-

ing biomarkers of disease progression. The study was conducted in accordance with

the Declaration of Helsinki and the International Conference on Harmonisation guide-
line on Good Clinical Practices and applicable local regulatory requirements and laws.

All participants were ambulatory and agreed to volunteer for MRI scanning after giving
written informed consent.

All HD patients had a genetically confirmed diagnosis with a trinucleotide (cytosine-

adenine-guanine) repeat length of 36 or higher, and had clinical features of mild HD at
stage I based on the Unified Huntington’s Disease Rating Scale (UHDRS) with a Total

Functional Capacity (TFC) score of 11–13. In total, 61 HD and 40 control subjects
were scanned at visit 1, 56 HD and 39 control subjects were scanned at visit 2

(6 months after baseline), and 55 HD and 37 control subjects were scanned at visit 3
(15 months after baseline).

Acquisition parameters for the different sites were similar with slight variations of the

standardized acquisition protocol. DTI was performed with echo planar sequences, where
each data volume consisted of 52 to 76 axial slices of 2.0 mm or 2.2 mm thickness (de-

pending on the scanner of the different sites, whole brain coverage was guaranteed), with
no inter-slice gaps, and an acquisition matrix of between 112 ×112 to 128 × 128 with in-

plane resolution of 2.0 × 2.0 mm2, or 2.2 × 2.2 mm2, respectively. TR ranged between 8 s

and 13 s, and TE ranged between 56 ms and 86 ms. Each DTI data set consisted of more
than 40 b = 1000 s/mm2, and one or more b = 0 scans. More detailed acquisition parame-

ters for the different sites have already been reported previously [12].

Diffusion tensor imaging and data analysis overview

A DTI scan consists of a number of gradient encoding volumes, e.g. some b = 0 scans
as well as a number of scans with different diffusion encoding gradients [14]. Diffusion
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tensor calculation results in an over-determined equation system and further
parameterization for quantification of the diffusion anisotropy is the fractional anisot-

ropy (FA) [15]. FA, a dimensionless scalar measuring the diffusion directionality in a
single voxel, was used as the DTI-based metric for this study.

In a general simplification, any measured MR signal is a combination of the true

quantity, acquisition system noise, environmental noise, and subject specific noise.
Ideally, the quality of the measured signal (i.e. the signal to noise ratio: SNR) can be im-

proved by signal accumulation [16]. If applied to DTI data, the repeated recording of
diffusion encoding volumes should lead to an improvement of the accurateness of the

diffusion tensor and the FA value in each voxel [17,18]. Thus, if some of those repeated
gradient direction (GD) images were corrupted by subject movement or by other

sources of noise, the integration of these corrupted GD images into the tensor calcula-

tion (or FA values, respectively) would bias the results. Contrariwise, the removal of
noisy or corrupted volumes from tensor calculation (or FA values, respectively) could

reduce this bias [6].
The in-house DTI analysis softwareTensor Imaging and Fibre Tracking(TIFT;

[19,20]) was used for post-processing and statistical analysis. Figure 1 shows a sche-

matic overview of data processing and analysis, divided into the iterative template-
specific normalization to the Montreal Neurological Institute (MNI) stereotactic frame

[21] – with and without QC, respectively (Figure 1A), and the scheme for statistical

Figure 1 Analysis schemes for cross-sectional comparison. (A)Schematic example for an iterative
template-specific MNI-normalization: after a 1st normalization step based on landmarks, first templates T1

((b = 0) template and FA-template) were obtained by arithmetic averaging of DTI-data I0. Analyses were
performed with or without quality control (QC) and subsequent gradient direction elimination. Subsequently, in an
iterative procedure, normalized DTI-data I1 were obtained by non-linear normalization to the previously defined
templates (T1). From these newly normalized DTI-data I1, new templates (T2) were derived which again could be
used for normalization. This iterative process is stopped when a predefined coincidence (measure by correlation)
between DTI-data and templates was reached.(B)Scheme for whole brain-based spatial statistics: FA-
maps are calculated from normalized DTI data and asmoothing filter to the individual normalized FA-
maps is applied. In a consecutive step, voxelwise statistical comparison between the patient groups and
the corresponding control group is performed. Final steps are correction for multiple comparisons using
the false-discovery-rate (FDR) algorithm and a clustering procedure for further reduction of type I and
type II errors.
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analysis (Figure 1B). Whole brain-based spatial statistical analysis is a voxel-based DTI
analysis approach in which unbiased results at whole brain basis are obtained, as previ-

ously reported [20,22]. FA-maps were calculated from MNI-normalized DTI data, and
a Gaussian smoothing filter of 8 mm FWHM was applied to the individual normalized

FA-maps. In a consecutive step, voxelwise statistical comparison between the patient

groups and the corresponding control group was performed by Student’s t-test. FA
values below 0.2 were not considered for calculation as cortical grey matter shows FA

values up to 0.2 [23]. Next steps were correction for multiple comparisons using the
false-discovery-rate (FDR) algorithm [24] at p < 0.05, and a clustering procedure for fur-

ther reduction of type I and type II errors. In general, a threshold cluster size of
512 voxels is to be considered a good choice [12]. However, a lower threshold cluster

size of 64 voxels (corresponding to a sphere with radius of approximately 1 acquisition

voxel) was applied in this study in order to elucidate also small-size differences.

Quality Control (QC)

For each GDj, the weighted intensity difference of each slicen to the respective slice

of all other GD was computed

� I ji ;n ¼
ai;n

� �
� aj;n

� ��
�

�
�

ai;n
� �

þ aj;n
� ��

�
�
� ð1Þ

where

�aj,n� denotes the arithmetic average intensity of the slicen under observation of GD
j and �ai,n� slicen for comparison of GDi.

The relative average intensity deviation for slicen was then weighted by the dot prod-

uct of vectors of two GDi and j, gi
�

gj
�

, summarized for all GDi and subtracted from 1:

diff I j;n
� �

¼ 1�
1
N

XN

i¼0

gi
�

gj
�

� I ji ; n; ð2Þ

reflecting the deviation of a single slicen of GD j to the respective slices of all other

GD.
A global quality quantity for GDj could be defined as the minimum ofdiff(Ij,n) for all

slices n:

Qj ¼ min diff I j;n
� �� �

n ð3Þ

Qj reflects the minimum of slicewise comparisons of all slices for GDj. If Qj falls

below a certain threshold, the whole GD was eliminated for analysis. The procedure is
not iterative, andQj values of different GD are influenced by each other. Thus, in the

case of a series of corrupted GD (with hypointense slices), the global level ofQj de-

creases. As a solution, theQ-level could be lowered, or as an alternative, an iterative
approach (e.g. [2]) could be performed, eliminating the GD with lowestQj in a first step

and then perform QC again with the remaining GD.
In [6], a threshold of 0.8 was suggested. Lower thresholds could lead to unidentified

corrupted GD and by a higher threshold, the Q-level of the whole data set will be low-

ered in data sets with more corrupted GD since Q-values of all volumes are influenced
by each other.
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That way, an artefact correction was performed by detecting GD with at least one
slice showing intensity changes, i.e. artefacts caused by spontaneous subject movement

or other sources of distortion.

Impact of QC-based elimination of corrupted GD

The impact of QC-based elimination of corrupted GD was investigated in two ways:

1) The possible impact of corrupted GD on FA-maps was analysed by ROI analysis in
FA maps prior to MNI normalization for a single visit with and without QC based

elimination of GD. ROIs at the identical anatomical position of other visits could
act as a reference. This analysis was performed by the following procedure: (i) DTI

data of a single HD subject were selected in which two visits showed no corrupted

GD and one visit showed a series of corrupted GD. (ii) A difference map was
calculated from FA maps of the visit with corrupted GD by simple subtraction of

the FA maps with and without GD elimination. (iii) In a data-driven approach, a
ROI was placed in a brain region where differences in FA were detected by the

difference map. (iv) An experienced operator identified the anatomical ROI position

in the FA maps of the other visits without the knowledge of FA values. (v) Mean
FA values of all visits in the respective ROIs were compared in the contrast with vs.

without QC-based GD elimination.
2) Using cross-sectional whole brain comparison the impact of corrupted GDs on FA

maps was assessed in HD participants and controls. Corrupted GDs may impact

FA maps in two ways. (i) FA values differ (Figure1A and Figure2) and (ii) MNI
Registration of the subject’s FA image to the study-specific group template (which

are based on study specific FA templates calculated from single subject FA maps)
also could show differences, i.e. the MNI normalization process of all DTI data sets

might also be influenced by differences in the FA maps of individual participants
(Figure1B).

Furthermore, between-group differences in cross-sectional data were investigated.
The result patterns were compared to cross-sectional comparisons of DTI data sets

from two further visits. Thus, each time point of the longitudinal data has been used as
a single cross-sectional test point. This way, longitudinal data per-subject was used as a

scan-rescan reproducibility test with the inherent assumption that the effect of progres-

sion of the disease over the time scale of the study on the diffusion images is negligible
in first order, and hence the group-wise differences should only slightly proceed for the

three time points.

Results
Impact of corrupted GD on individual FA maps

Hypointense slices indicating corruption in single volumes of an individual DTI data

set (Figure 2, upper panel) were identified by reducedQ-values (Q < 0.8) within the re-
spective volume (Figure 2, lower panel).

In more than 50% of the HD patients’ DTI data, a constellation could be found where

GD elimination led to an adjustment of ROI-based mean FA values. Figure 3 illustrates
an example for a ROI analysis (HD subject 589). Here, visits 1 and 3 had no GD
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Figure 2 Corrupted slices in DTI volumes.DTI data (volumes number 29 to 31) of an HD subject (subject
589).Upper panel: reconstructed central sagittal slice where axial slices affected by noise are visible (volume
number 30).Lower panel:With a QC-threshold of Q = 0.8, nine gradient directions (GD) were detected as
corrupted by noise.

Figure 3 Region of interest analysis of FA maps from three longitudinal DTI scans.Region of interest
(ROI) analysis of visit 1 and visit 3 were without gradient direction (GD) elimination by quality control (QC)
since no corruption was evident. During visit 2, 9 GD (compare Figure 1) had to be eliminated. ROI based
mean FA values changed with and without QC, respectively. Although ROI localization was identical for the
three visits the respective slices look apparently different due to different slice orientation
during acquisition.
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eliminations while nine corrupted GD were found in visit 2. A ROI was placed in the
position where the difference matrix of visit 2 (with vs. without GD elimination)

showed its local maximum in FA differences. Mean FA values in the ROI were com-
pared to mean FA values of visits 1 and 3 at the identical ROI positions. Thus, without

QC, FA values in the selected ROI in FA maps from visit 2 data were lower compared

with FA values from visits 1 or 3. After elimination of the nine corrupted volumes, FA
values of visit 2 data in the selected anatomical ROI were identical to FA values of visits

1 and 3.

Impact of corrupted GD on cross-sectional comparison of FA maps

In the next step, the impact of QC-based GD elimination on the cross-sectional com-

parisons between FA maps from HD participants against controls was investigated: re-

sults clusters, i.e. patterns of significant FA reductions and increases, from cross-
sectional differences between HD subjects and controls were compared with or without

QC-based GD elimination for the three visits.
The application of the QC algorithm resulted in specific QC characteristics for each

DTI data set with identified volumes to be eliminated for FA calculation. The statistics

for the number of eliminated volumes for all DTI data sets are summarized in Figure 4
as GD elimination statistics. The numbers of GDs excluded during the QC process for

each participant are displayed separately for each visit. The removed GD were tested
on systematic distribution concerning (i) the frequency of a specific GD and (ii) the fre-

quency of spatial orientation. A random frequency and spatial distribution of removed

GD was found without clustering in a particular orientation, that way vibration-
induced artifacts (e.g. [2]) could be excluded.

Four data sets showed more than 10 corrupted GD. An intrinsic property of the QC
algorithm is that it shows a general reduction of theQ value for a greater number of

corrupted GD. For these four scans theQ level was lowered to 0.7. Consequently, in

each of the four scans more than 20 GD could be used for tensor calculations. Since
this number is still sufficient due to the results of [6], the affected scans were not en-

tirely eliminated from the study. All remaining scans showed less than 10 QC elimina-
tions, i.e. less than 20% of GDs were eliminated in DTI data sets due to QC so that no

(substantial) single data set FA changes could be expected according to [6].
Cross-sectional result patterns differ if QC-based GD elimination was applied (see for

example Figure 5, left panel– visit 1). The QC-based GD elimination influences the FA

maps and thus, as a consequence, appearance of result clusters of smaller extent from
cross-sectional group comparisons. For example, in visit 1 the group comparison with-

out QC-based GD elimination showed a cluster with FA decrease in the hippocampal
region (no. 21– Table 1) which does not appear under QC-based GD elimination (type

I error). On the other hand, a cluster in the frontal lobe (no. 14– Table 1) appears for

visit 1 with QC-based GD elimination which is not present without QC-based GD
elimination (type II error). The hippocampal cluster (no. 21) was not confirmed by lon-

gitudinal data, i.e. cross-sectional group comparisons at visits 2 and 3, whereas the
frontal lobe cluster (no. 14) appears also at visit 2 and visit 3 cross-sectional

comparisons.

Figure 5 and Table 1 summarize results of cross-sectional group comparisons of HD
participants and controls for the three visits with or without QC-based GD elimination.
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The overall patterns of FA reductions or increases were consistent for all visits, i.e. re-
gional FA increases in the basal ganglia and FA reductions in the internal and external

capsule, thalamic regions and corpus callosum (CC). This result was achieved although

the number of contributors differed during each visit. For the three visits, cross-
sectional FA comparisons showed result patterns sharing common clusters. This effect

also appeared irrespective of the analysis being performed with or without QC-based
GD elimination; as a consequence cluster locations and sizes in Table 1 could not be

directly compared. FA reduction clusters covered the internal and external capsule, the

thalamic region, and the CC. In addition, clusters were found in the occipital, frontal,
parietal lobe, and limbic areas. Clusters with FA increase involved the basal ganglia. De-

pending on the performance of QC-based GD elimination, additional small clusters ap-
peared in the temporal and parietal lobe, the internal capsule, and in the hippocampus.

Cluster 18 is an example of a cluster that does not show up in visit 2 (cross-sectional

comparison) without QC (type II error). Clusters 20 and 21 are examples of clusters
that appear only in visit 1 without QC (type I error).

Figure 4 Quality control statistics. Gradient direction (GD) elimination statistics per each visit displays the
number of gradient directions excluded in the QC process separately for each subject and for each of the
diagnostic groups.
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Discussion
Effect of corruptions in a DTI data set

Movement associated image corruptions are a matter of concern in neuroimaging re-

search. These artefacts may reduce the potential of DTI as a biomarker in HD. Algo-
rithms are therefore needed that compensate for corrupted volumes in a DTI scan.

In this study, we used an algorithm for automatic and objective detection of volumes

that contain corrupted slices. Identified volumes with corrupted GD were then ex-
cluded from further calculations of DTI metrics. The question to what extent GD could

be removed from a DTI data set without relevant changes to FA maps had previously
been addressed [6]. The present study is a continuation of QC-based studies of our

group as well as of other groups [2,4,5,7]. It could be demonstrated in the present study

that corrupted volumes in DTI acquisitions have impact on the results of cross-
sectional group comparisons of FA maps.

The effects of corrupted volumes on cross-sectional result patterns were two-fold:
first, corrupted volumes influenced FA values alone, and secondly, as a consequence,

they could have impact on registration of the subject’s FA image to the study-specific
group template (which is based on study specific FA templates calculated from single

subject FA maps). This means that the MNI normalization process of all DTI data sets

was also influenced by differences in the FA maps of individual participants.
In this study, no entire scans had to be eliminated although the first QC showed

some scans with a greater number of corrupted GD. For these cases, a Q threshold re-
duction could detect the most corrupted volumes and the number of remaining GD

was considered still sufficient for accurate tensor detection. In cases where Q threshold

reduction detects so many GD that only few non-corrupted GD would survive correc-
tion, we suggest that such a data set should be entirely eliminated from the study.

Figure 5 Results of cross-sectional group comparison.Clusters of significant FA differences between
HD subjects and controls for the three visits. Hot colors indicate FA reductions in the comparison controls
vs. HD subjects, cold colors indicate FA increases in this comparison.(A) Representative slices of identical
MNI coordinates (0/-29/0) for visits 1 to 3 with and without quality control (QC), respectively. Red circles
indicate additional clusters depending if QC based gradient direction elimination was performed, or not.(B)
Examples of clusters that are only present in one visit, depending if QC based gradient direction elimination
was performed or not. An example is shown for each visit 1 to 3; for clarity of presentation, the respective
slices of the other visits for which no clusters could be detected are not displayed.
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Table 1 Cluster statistics for cross-sectional group comparison

cl. Visit 1 Visit 2 Visit 3 Visit 1 (QC) Visit 2 (QC) Visit 3 (QC)

1 basal ganglia R 4,337 5,143 4,491 4,579 5,356 4,551

MNI (x/y/z) 20/-6/-2 18/-7/-2 20/-7/-1 21/-6/-2 19/-8/-2 23/3/3

2 basal ganglia L 3,997 2,574 2,553 4,287 2,873 2,571

MNI (x/y/z) � 19/-8/-3 � 18/-7/-4 � 25/2/7 � 19/-8/-3 � 25/3/7 � 24/3/6

3 thalamic region internal capsule R/L 40,800 1,617 84,048 7,961 1,665 5,560

MNI (x/y/z) 34/-17/-13 34/-18/-11 35/-19/-12 35/-18/-12 34/-18/-11 35/-18/-12

4 thalamic region R within cl. 3 within cl. 11 within cl. 3 32,070 1,289 within cl. 11

MNI (x/y/z) � 3/-14/4 � 19/-10/9

5 thalamic region R within cl. 3 within cl. 11 within cl. 3 1,859 within cl. 11 within cl. 11

MNI (x/y/z) 25/4/-13

6 thalamic region R 1,072 within cl. 11 within cl. 3 738 within cl. 11 within cl. 11

MNI (x/y/z) 16/-40/4 16/-41/4

7 thalamic region L 13,094 4,770 within cl. 3 11,640 2,743 4,622

MNI (x/y/z) � 21/-21/-15 � 20/-22/-13 � 21/-21/-13 � 20/-22/-13 � 23/-21/-11

8 internal capsule L within cl. 7 432 within cl. 3 within cl. 7 335 within cl. 11

MNI (x/y/z) 18/-9/12 18/-9/12

9 external capsule L within cl. 7 within cl. 11 within cl. 3 within cl. 7 1,406 within cl. 11

MNI (x/y/z) � 35/-15/7

10 external capsule R 255 within cl. 11 within cl. 3 272 within cl. 11 within cl. 11

MNI (x/y/z) 36/-13/8 34/7/2

11 CC R/L 1,400 41,508 within cl. 3 3426 35,008 37705

MNI (x/y/z) � 9/18/12 � 11/-25/25 � 7/17/13 � 11/-25/25 � 27/-56/19

12 occipital lobe R 2,210 2,026 3,166 2,160 2,015 1,845
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Table 1 Cluster statistics for cross-sectional group comparison (Continued)

MNI (x/y/z) 35/-89/-8 38/-74/-5 38/-71/-7 34/-88/-8 38/-75/-4 37/-73/-6

13 occipital lobe L 1,685 1,027 within cl. 3 2,010 950 891

MNI (x/y/z) � 40/-68/2 � 39/-69/2 � 41/-68/1 � 39/-69/2 � 40/-67/1

14 frontal lobe L no cluster 294 497 373 280 453

MNI (x/y/z) � 34/27/6 � 41/29/-1 � 40/29/1 � 34/27/6 � 41/29/-1

15 limbic lobe L no cluster no cluster within cl. 11 296 422 within cl. 11

MNI (x/y/z) � 16/0/37 � 15/3/35

16 parietal lobe L 682 no cluster within cl. 11 within cl. 3 within cl. 11 within cl. 11

MNI (x/y/z) � 18/-49/34

17 occipital lobe L 643 319 within cl. 3 283 307 within cl. 13

MNI (x/y/z) � 22/-81/22 � 22/-80/24 � 23/-82/22 � 22/-80/23

18 temporal lobe L 205 no cluster within cl. 3 172 1279 203

MNI (x/y/z) � 46/-52/3 � 47/-50/3 � 48/-53/5 � 46/-51/7

19 parietal lobe R 230 no cluster 311 256 no cluster 317

MNI (x/y/z) 19/-64/49 19/-61/47 19/-62/50 18/-63/49

20 internal capsule R/L 195 no cluster no cluster no cluster no cluster no cluster

MNI (x/y/z) � 10/6/-6

21 hippocampus R 192 no cluster no cluster no cluster no cluster no cluster

MNI (x/y/z) L � 26/-20/-26

Clusters (cl.) of the FA map group comparison between HD subjects and controls (cl. size/voxels and MNI coordinates of the area with highest significance). All clusters listed in this table show a p-value of p < 0.001.
Basically, several cluster groups that are interconnected in different analyses were found. Clusters 1,2 (FA increase): clusters located in the basal ganglia. Clusters 3-17 (FA reduction): clusters covering the thalamic area,
external and internal capsule, and corpus callosum (CC); additional clusters in the occipital, frontal, parietal lobe, and limbic regions. Clusters 18-21 (FA reduction): small clusters in the temporal and parietal lobe, the
internal capsule, and the hippocampus.
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Application of QC-based GD elimination on cross-sectional result patterns

The results of our analysis demonstrate that the voxelwise pattern of cross-sectional FA

group differences between HD subjects and controls showed high consistency with previ-
ous reports of other research groups (e.g. [10,11]). In addition, the repeated cross-

sectional group comparisons showed rather constant result patterns. Differences between

results with and without QC-based GD elimination in terms of cluster size and location
originate from interconnections between clusters.

Importantly, the presence or absence of clusters in FA maps of visit 2 relative to visits
1 and 3 most likely reflect type I or type II errors, respectively, since their localisation

does not match with brain regions typically affected in HD whose FA changes could be
explained by the course of the disease per se. Since some of the cross-sectional FA

changes of visits 1 and 3 are consistent, differences in FA changes for visit 2 cannot be

reasonably attributed to disease progression, due to the temporal relationships between
the data. In a single cross-sectional test point, the inconsistency of clusters between the

group-wise results with and without corrupt GD removal is not technically adequate to
label the differential presence or absence of clusters as type I or type II errors: however,

the consistency of these results across three separate cross-sectional tests provides add-

itional evidence for classification.

Limitations of the study

This study is based on a general approach how the incorporation of corrupted GD

could affect tensor calculations and group differences at whole brain level and at the

group level. However, if the gradient directions removed are isotropically distributed
both within and between subjects, the influence will be akin to SNR reduction. If gradi-

ents in a particular direction are more likely to lead to artefact and hence volume re-
moval (as it is the case in vibration-induced artefact in diffusion imaging), this could

cause a bias in tensor estimation, and therefore non-stationarity in statistical power de-

pending on the underlying fibre orientations. It is open to discussion whether the whole
volume should be eliminated when only a few slices show corruptions. If only single

slices were omitted for FA calculation, the remaining voxels (with no slice in any vol-
ume being corrupted) would show less bias. On the other hand, FA maps would then

be calculated where the voxel FA values in one FA map would originate from a differ-
ent number of GDs. In order to keep the number of GD constant from which FA values

of an individual FA map are calculated, we suggest that each FA map should be calcu-

lated with the number of GD contributing to the diffusion tensors in the voxels should
be kept constant for individual FA maps if repeatedly measured across time. Neverthe-

less, FA maps of different subjects could still originate from different sets of GD.
A different situation emerges regarding intraindividual longitudinal data comparisons.

Here, case one would require the number of GDs to be identical across repeated mea-

surements for single subjects to reliably estimate longitudinal changes in FA maps. For
the aim of this study, longitudinal data were only used for validation of cross-sectional

result patterns while we did not compare FA maps within HD subjects, or controls,
longitudinally. Therefore, further research is needed how to apply QC on GD for longi-

tudinal FA analysis.

With respect to the validation of cross-sectional result patterns by longitudinal data
itself, it might be considered that the consistency of these clusters between the three
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time points (or lack thereof ) does not in all cases provide evidence for the labelling of
these inconsistent clusters as errors. In fact, if a cluster is present without GD rejection

and disappears with GD rejection, this suggests but is not full evidence to label this
cluster as a type I error, as the‘actual’ difference in unknown; it is the absence of this

cluster in the statistical tests at other time points that makes it probable that the cluster

is in fact a statistical error.
The QC-based GD elimination described in this study is a global tool to eliminate

corrupted GD. However, if slice dropout is caused by subject movement, the probability
of the subject moving back to the precise location they were in before the movement is

rather unlikely. Therefore, even explicit inter-volume motion correction may not be ad-
equate to fully recover these volumes, as non-linear volume components will be

present in the movement regression. This depends on factors like slice timing and

order. Therefore, the ultimate justification for rejection of GD is grounded in the mech-
anism by which diffusion images are acquired.

Conclusion
In summary, QC of DTI data clearly impacted upon the results pattern of FA reduc-

tions and increases at the group level when comparing HD subjects and controls. We

could show that some small clusters were observed in cross-sectional results without
QC-based GD elimination, suggesting that corrupted GDs may increase the risk of type

I errors and should consequently be eliminated during a QC process. Furthermore,
QC-based GD elimination was associated with emergence of otherwise undetected

clusters of group differences indicating that QC-based GD elimination may also protect
against type II errors at the level of group comparisons.
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