C. Zuccato, M. Valenza, and E. Cattaneo, Molecular Mechanisms and Potential Therapeutical Targets in Huntington's Disease, Physiological Reviews, vol.90, issue.3, pp.905-981, 2010.
DOI : 10.1152/physrev.00041.2009

O. Adam and J. Jankovic, Symptomatic treatment of Huntington disease, Neurotherapeutics, vol.1, issue.7848, pp.181-197, 2008.
DOI : 10.1016/j.nurt.2008.01.008

A. Busch, S. Engemann, R. Lurz, H. Okazawa, H. Lehrach et al., Mutant Huntingtin Promotes the Fibrillogenesis of Wild-type Huntingtin: A POTENTIAL MECHANISM FOR LOSS OF HUNTINGTIN FUNCTION IN HUNTINGTON'S DISEASE, Journal of Biological Chemistry, vol.278, issue.42, pp.41452-41461, 2003.
DOI : 10.1074/jbc.M303354200

S. Suhr, M. Senut, J. Whitelegge, K. Faull, D. Cuizon et al., Identities of Sequestered Proteins in Aggregates from Cells with Induced Polyglutamine Expression, The Journal of Cell Biology, vol.16, issue.2, pp.283-294, 2001.
DOI : 10.1146/annurev.neuro.23.1.217

Y. Chai, J. Shao, V. Miller, A. Williams, and H. Paulson, Live-cell imaging reveals divergent intracellular dynamics of polyglutamine disease proteins and supports a sequestration model of pathogenesis, Proceedings of the National Academy of Sciences, vol.99, issue.14, pp.999310-9315, 2002.
DOI : 10.1073/pnas.152101299

W. Lee, M. Yoshihara, and J. Littleton, Cytoplasmic aggregates trap polyglutamine-containing proteins and block axonal transport in a Drosophila model of Huntington's disease, Proceedings of the National Academy of Sciences, vol.101, issue.9, pp.3224-3229, 2004.
DOI : 10.1073/pnas.0400243101

S. Finkbeiner and M. S. , The ubiquitin-proteasome pathway in Huntington's disease, Sci World J, vol.8, pp.421-433, 2008.

Y. Arribat, N. Bonneaud, Y. Talmat-amar, S. Layalle, M. Parmentier et al., A Huntingtin Peptide Inhibits PolyQ-Huntingtin Associated Defects, PLoS ONE, vol.24, issue.7, p.68775, 2013.
DOI : 10.1371/journal.pone.0068775.s009

J. Godin, G. Poizat, M. Hickey, F. Maschat, and H. S. , Mutant huntingtin-impaired degradation of ??-catenin causes neurotoxicity in Huntington's disease, The EMBO Journal, vol.80, issue.14, pp.2433-2445, 2010.
DOI : 10.1038/ng1219

M. Heng, P. Detloff, H. Paulson, and R. Albin, Early alterations of autophagy in Huntington disease-like mice, Autophagy, vol.6, issue.8, pp.1206-1208, 2010.
DOI : 10.4161/auto.6.8.13617

E. Rockabrand, N. Slepko, A. Pantalone, V. Nukala, A. Kazantsev et al., The first 17 amino acids of Huntingtin modulate its sub-cellular localization, aggregation and effects on calcium homeostasis, Human Molecular Genetics, vol.16, issue.1, pp.61-77, 2007.
DOI : 10.1093/hmg/ddl440

A. Southwell, J. Ko, and P. Patterson, Intrabody Gene Therapy Ameliorates Motor, Cognitive, and Neuropathological Symptoms in Multiple Mouse Models of Huntington's Disease, Journal of Neuroscience, vol.29, issue.43, pp.13589-13602, 2009.
DOI : 10.1523/JNEUROSCI.4286-09.2009

D. Sah and N. Aronin, Oligonucleotide therapeutic approaches for Huntington disease, Journal of Clinical Investigation, vol.121, issue.2, pp.500-507, 2011.
DOI : 10.1172/JCI45130

V. Chopra, J. Fox, G. Lieberman, K. Dorsey, W. Matson et al., A small-molecule therapeutic lead for Huntington's disease: Preclinical pharmacology and efficacy of C2-8 in the R6/2 transgenic mouse, Proceedings of the National Academy of Sciences, vol.104, issue.42, pp.16685-16689, 2007.
DOI : 10.1073/pnas.0707842104

H. Popiel, Y. Nagai, N. Fujikake, and T. Toda, Delivery of the aggregate inhibitor peptide QBP1 into the mouse brain using PTDs and its therapeutic effect on polyglutamine disease mice, Neuroscience Letters, vol.449, issue.2, pp.87-92, 2009.
DOI : 10.1016/j.neulet.2008.06.015

I. Dragatsis, M. Levine, and S. Zeitlin, Inactivation of Hdh in the brain and testis results in progressive neurodegeneration and sterility in mice, Nat Genet, vol.26, issue.3, pp.300-306, 2000.

B. Leavitt, J. Guttman, J. Hodgson, G. Kimel, R. Singaraja et al., Wild-Type Huntingtin Reduces the Cellular Toxicity of Mutant Huntingtin In Vivo, The American Journal of Human Genetics, vol.68, issue.2, pp.313-324, 2001.
DOI : 10.1086/318207

F. Squitieri, C. Gellera, M. Cannella, C. Mariotti, G. Cislaghi et al., Homozygosity for CAG mutation in Huntington disease is associated with a more severe clinical course, Brain, vol.126, issue.4, pp.946-955, 2003.
DOI : 10.1093/brain/awg077

L. Gauthier, B. Charrin, M. Borrell-pages, J. Dompierre, H. Rangone et al., Huntingtin Controls Neurotrophic Support and Survival of Neurons by Enhancing BDNF Vesicular Transport along Microtubules, Cell, vol.118, issue.1, pp.127-138, 2004.
DOI : 10.1016/j.cell.2004.06.018

J. Van-raamsdonk, J. Pearson, Z. Murphy, M. Hayden, and B. Leavitt, Wild-type huntingtin ameliorates striatal neuronal atrophy but does not prevent other abnormalities in the YAC128 mouse model of Huntington disease, BMC Neuroscience, vol.7, issue.1, p.80, 2006.
DOI : 10.1186/1471-2202-7-80

E. Cattaneo, C. Zuccato, and M. Tartari, Normal huntingtin function: an alternative approach to Huntington's disease, Nature Reviews Neuroscience, vol.217, issue.12, pp.919-930, 2005.
DOI : 10.1038/nrn1806

B. Mugat, M. Parmentier, N. Bonneaud, H. Chan, and F. Maschat, Protective role of Engrailed in a Drosophila model of Huntington's disease, Human Molecular Genetics, vol.17, issue.22, pp.3601-3616, 2008.
DOI : 10.1093/hmg/ddn255

L. Mangiarini, K. Sathasivam, M. Seller, B. Cozens, A. Harper et al., Exon 1 of the HD Gene with an Expanded CAG Repeat Is Sufficient to Cause a Progressive Neurological Phenotype in Transgenic Mice, Cell, vol.87, issue.3, pp.493-506, 1996.
DOI : 10.1016/S0092-8674(00)81369-0

I. Rattray, E. Smith, R. Gale, K. Matsumoto, G. Bates et al., Correlations of Behavioral Deficits with Brain Pathology Assessed through Longitudinal MRI and Histopathology in the R6/2 Mouse Model of HD, PLoS ONE, vol.20, issue.7, p.60012, 2013.
DOI : 10.1371/journal.pone.0060012.s015

R. Carter, L. Lione, T. Humby, L. Mangiarini, A. Mahal et al., Characterization of progressive motor deficits in mice transgenic for the human Huntington's disease mutation, J Neurosci, vol.19, issue.8, pp.3248-3257, 1999.

J. Wadia and S. Dowdy, Protein transduction technology, Current Opinion in Biotechnology, vol.13, issue.1, pp.52-56, 2002.
DOI : 10.1016/S0958-1669(02)00284-7

A. Joliot and A. Prochiantz, Transduction peptides: from technology to physiology, Nature Cell Biology, vol.6, issue.3, pp.189-196, 2004.
DOI : 10.1038/ncb0304-189

J. Wadia and S. Dowdy, Transmembrane delivery of protein and peptide drugs by TAT-mediated transduction in the treatment of cancer, Advanced Drug Delivery Reviews, vol.57, issue.4, pp.579-596, 2005.
DOI : 10.1016/j.addr.2004.10.005

A. Mouri, O. Diat, E. Ghzaoui, A. Bauer, C. Maurel et al., Phase behavior of reverse microemulsions based on Peceol??, Journal of Colloid and Interface Science, vol.416, pp.139-146, 2014.
DOI : 10.1016/j.jcis.2013.10.058

URL : https://hal.archives-ouvertes.fr/hal-00926026

M. Pouladi, E. Brillaud, Y. Xie, P. Conforti, R. Graham et al., NP03, a novel low-dose lithium formulation, is neuroprotective in the YAC128 mouse model of Huntington disease, Neurobiology of Disease, vol.48, issue.3, pp.282-289, 2012.
DOI : 10.1016/j.nbd.2012.06.026

A. Sittler, S. Walter, N. Wedemeyer, R. Hasenbank, E. Scherzinger et al., SH3GL3 Associates with the Huntingtin Exon 1 Protein and Promotes the Formation of Polygln-Containing Protein Aggregates, Molecular Cell, vol.2, issue.4, pp.427-436, 1998.
DOI : 10.1016/S1097-2765(00)80142-2

M. Tanaka, Y. Machida, S. Niu, T. Ikeda, N. Jana et al., Trehalose alleviates polyglutamine-mediated pathology in a mouse model of Huntington disease, Nature Medicine, vol.10, issue.2, pp.148-154, 2004.
DOI : 10.1038/nm985

J. Rodriguez-navarro, L. Rodriguez, M. Casarejos, R. Solano, A. Gomez et al., Trehalose ameliorates dopaminergic and tau pathology in parkin deleted/tau overexpressing mice through autophagy activation, Neurobiology of Disease, vol.39, issue.3, pp.423-438, 2010.
DOI : 10.1016/j.nbd.2010.05.014

E. Khafagy and M. Morishita, Oral biodrug delivery using cell-penetrating peptide, Advanced Drug Delivery Reviews, vol.64, issue.6, pp.531-539, 2012.
DOI : 10.1016/j.addr.2011.12.014

A. Sieuwerts, J. Klijn, H. Peters, and J. Foekens, The MTT Tetrazolium Salt Assay Scrutinized: How to Use this Assay Reliably to Measure Metabolie Activity of Cell Cultures in vitro for the Assessment of Growth Characteristics, IC50-Values and Cell Survival, Clinical Chemistry and Laboratory Medicine, vol.33, issue.11, pp.813-823, 1995.
DOI : 10.1515/cclm.1995.33.11.813

D. Drexler, T. Garrett, J. Cantone, R. Diters, J. Mitroka et al., Utility of imaging mass spectrometry (IMS) by matrix-assisted laser desorption ionization (MALDI) on an ion trap mass spectrometer in the analysis of drugs and metabolites in biological tissues, Journal of Pharmacological and Toxicological Methods, vol.55, issue.3, pp.279-288, 2007.
DOI : 10.1016/j.vascn.2006.11.004

J. Sassone, C. Colciago, G. Cislaghi, V. Silani, and A. Ciammola, Huntington's disease: The current state of research with peripheral tissues, Experimental Neurology, vol.219, issue.2, pp.385-397, 2009.
DOI : 10.1016/j.expneurol.2009.05.012

R. Ferrante, O. Andreassen, A. Dedeoglu, K. Ferrante, B. Jenkins et al., Therapeutic effects of coenzyme Q10 and remacemide in transgenic mouse models of Huntington's disease, J Neurosci, vol.22, issue.5, pp.1592-1599, 2002.

M. Costanzo, S. Abounit, L. Marzo, A. Danckaert, Z. Chamoun et al., Transfer of polyglutamine aggregates in neuronal cells occurs in tunneling nanotubes, Journal of Cell Science, vol.126, issue.16, pp.3678-3685, 2013.
DOI : 10.1242/jcs.126086

URL : https://hal.archives-ouvertes.fr/pasteur-00874692

S. Tam, C. Spiess, W. Auyeung, L. Joachimiak, C. B. Poirier et al., The chaperonin TRiC blocks a huntingtin sequence element that promotes the conformational switch to aggregation, Nature Structural & Molecular Biology, vol.11, issue.12, pp.1279-1285, 2009.
DOI : 10.1074/jbc.M205809200

A. Yamamoto, J. Lucas, and R. Hen, Reversal of Neuropathology and Motor Dysfunction in a Conditional Model of Huntington's Disease, Cell, vol.101, issue.1, pp.57-66, 2000.
DOI : 10.1016/S0092-8674(00)80623-6

M. Arrasate, S. Mitra, E. Schweitzer, M. Segal, and S. Finkbeiner, Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death, Nature, vol.19, issue.7010, pp.805-810, 2004.
DOI : 10.1016/j.nbd.2004.04.001

S. Tabrizi, R. Scahill, G. Owen, A. Durr, B. Leavitt et al., Predictors of phenotypic progression and disease onset in premanifest and early-stage Huntington's disease in the TRACK-HD study: analysis of 36-month observational data, The Lancet Neurology, vol.12, issue.7, pp.637-649, 2013.
DOI : 10.1016/S1474-4422(13)70088-7

M. Mihm, D. Amann, B. Schanbacher, R. Altschuld, J. Bauer et al., Cardiac dysfunction in the R6/2 mouse model of Huntington???s disease, Neurobiology of Disease, vol.25, issue.2, pp.297-308, 2007.
DOI : 10.1016/j.nbd.2006.09.016

H. Kordasiewicz, L. Stanek, E. Wancewicz, C. Mazur, M. Mcalonis et al., Sustained Therapeutic Reversal of Huntington's Disease by Transient Repression of Huntingtin Synthesis, Neuron, vol.74, issue.6, pp.1031-1044, 2012.
DOI : 10.1016/j.neuron.2012.05.009

Y. Nagai, T. Tucker, H. Ren, D. Kenan, B. Henderson et al., Inhibition of Polyglutamine Protein Aggregation and Cell Death by Novel Peptides Identified by Phage Display Screening, Journal of Biological Chemistry, vol.275, issue.14, pp.10437-10442, 2000.
DOI : 10.1074/jbc.275.14.10437

X. Zhang, D. Smith, A. Meriin, S. Engemann, D. Russel et al., A potent small molecule inhibits polyglutamine aggregation in Huntington's disease neurons and suppresses neurodegeneration in vivo, Proceedings of the National Academy of Sciences, vol.102, issue.3, pp.892-897, 2005.
DOI : 10.1073/pnas.0408936102

W. Wolfgang, T. Miller, J. Webster, J. Huston, L. Thompson et al., Suppression of Huntington's disease pathology in Drosophila by human single-chain Fv antibodies, Proceedings of the National Academy of Sciences, vol.102, issue.32, pp.11563-11568, 2005.
DOI : 10.1073/pnas.0505321102

A. Southwell, A. Khoshnan, D. Dunn, C. Bugg, D. Lo et al., Intrabodies Binding the Proline-Rich Domains of Mutant Huntingtin Increase Its Turnover and Reduce Neurotoxicity, Journal of Neuroscience, vol.28, issue.36, pp.9013-9020, 2008.
DOI : 10.1523/JNEUROSCI.2747-08.2008

P. Bauer, A. Goswami, H. Wong, M. Okuno, M. Kurosawa et al., Harnessing chaperone-mediated autophagy for the selective degradation of mutant huntingtin protein, Nature Biotechnology, vol.257, issue.3, pp.256-263, 2010.
DOI : 10.1038/nbt.1608

D. Butler, J. Mclear, and A. Messer, Engineered antibody therapies to counteract mutant huntingtin and related toxic intracellular proteins, Progress in Neurobiology, vol.97, issue.2, pp.190-204, 2012.
DOI : 10.1016/j.pneurobio.2011.11.004

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3908675