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Carole Ichai4, Eric Fontaine3* and Xavier M Leverve3ˆ

Abstract

Introduction: Dengue shock syndrome (DSS) fluid resuscitation by following the World Health Organization (WHO)

guideline usually required large volumes of Ringer lactate (RL) that might induce secondary fluid overload. Our

objective was to compare the effectiveness of the recommended volume of RL versus a smaller volume of a

hypertonic sodium lactate solution (HSL) in children with DSS. The primary end point was to evaluate the effect

of HSL on endothelial cell inflammation, assessed by soluble vascular cell adhesion molecule-1 (sVCAM-1)

measurements. Secondarily, we considered the effectiveness of HSL in restoring hemodynamic fluid balance,

acid–base status, and sodium and chloride balances, as well as in-hospital survival.

Methods: A prospective randomized single-blind clinical trial including 50 DSS children was conducted in the

Pediatrics Department of Hasan Sadikin Hospital, Bandung, Indonesia. Only pediatric patients (2 to 14 years old)

fulfilling the WHO criteria for DSS and new to resuscitation treatments were eligible. Patients were resuscitated with

either HSL (5 ml/kg/BW in 15 minutes followed by 1 ml/kg/BW/h for 12 hours), or RL (20 ml/kg/BW in 15 minutes

followed by decreasing doses of 10, 7, 5, and 3 ml/kg BW/h for 12 hours).

Results: In total, 50 patients were randomized and included in outcome and adverse-event analysis; 46 patients

(8.2 ± 0.5 years; 24.9 ± 1.9 kg; mean ± SEM) completed the protocol and were fully analyzed (24 and 22 subjects in

the HSL and RL groups, respectively). Baseline (prebolus) data were similar in both groups. Hemodynamic recovery,

plasma expansion, clinical outcome, and survival rate were not significantly different in the two groups, whereas

fluid accumulation was one third lower in the HSL than in the RL group. Moreover, HSL was responsible for a partial

recovery from endothelial dysfunction, as indicated by the significant decrease in sVCAM-1.

Conclusion: Similar hemodynamic shock recovery and plasma expansion were achieved in both groups despite

much lower fluid intake and fluid accumulation in the HSL group.

Trial Registration: ClinicalTrials.gov NCT00966628. Registered 26 August 2009.
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Introduction
Dengue is the most frequent mosquito-borne viral

infection among human beings, with more than 50 million

new infections being projected annually [1]. Although it

resolves spontaneously in most cases, dengue hemorrhagic

fever (DHF) and dengue shock syndrome (DSS) are among

the leading causes of pediatric hospitalization. Mortality

rates from 1% to 5% are frequently reported for DHF/DSS

from centers experienced in fluid resuscitation, but rates

up to 44% have occasionally been reported in cases of

established shock [2].

The major pathophysiologic abnormality responsible

for DHF/DSS is an acute increase in vascular permeability,

leading to plasma leakage from the vascular to the extra-

vascular compartment [2-5], which results in hypovolemia

(biologically characterized by an hemoconcentration), re-

sponsible for a moderate to severe shock. It has been

suggested that the dengue virus induces a swelling of

endothelial cells [3], which may damage the tight-junction

complexes, thus increasing vascular permeability. Usually,

the capillary leakage resolves spontaneously by the sixth

day of illness and is rapidly followed by full recovery.

Microvascular permeability is intrinsically higher among

children than in adults, which may explain why children

are more prone than adults to DSS [4,6].

Endothelial cell inflammation is responsible for a high

expression of VCAM-1 at the cell surface, leading to an

increase in circulating sVCAM-1. It has been proposed

that circulating sVCAM-1 levels may reflect the severity

of the disease [7,8]. Therefore, from a theoretic point of

view, the optimal treatment of DSS should address both

the cause (endothelial dysfunction) and its consequence

(hypovolemia).

Three controlled randomized double-blind trials com-

paring different resuscitation fluids in children with

DHF/DSS failed to demonstrate any benefit of a particu-

lar fluid [9-11]. Comparing four fluids (Ringer lactate,

NaCl 0.9%, dextran 70, and 3% gelatin), Dung et al. [9]

did not find any difference in terms of administered

volume and shock resolution. The same result was ob-

tained in a comparable study with a larger population

[10]. However, it was noted that the early administration

of colloids to the most severely affected subgroup of

patients was beneficial [10]. A randomized double-blind

trial comparing three fluids (Ringer lactate, 6% dextran

70, 6% hydroxyethyl starch) for initial resuscitation of

children with DSS established that isotonic crystalloids

(RL) were as effective as colloids for initial resuscita-

tion of children with moderate shock [11]. Conse-

quently, the WHO recommends that patients with

DSS should benefit from an immediate volume replace-

ment with isotonic crystalloid solutions, followed by

the use of plasma or colloid solutions for profound or

continuing shock [2].

Totilac is a hypertonic lactate-based solution (see Table 1).

It has been shown to be able to restore hemodynamic sta-

tus and improve cardiac performance [12,13]. Moreover,

as compared with other hypertonic crystalloid-based

solutions, lactate can be used as an energy substrate

by various tissues [14]. Finally, the hypertonic lactate-

based solution has been shown to be effective in treating

intracranial hypertension after traumatic brain injury,

with a significantly more-pronounced effect than that

of an equivalent osmotic load of mannitol, suggest-

ing that sodium lactate may have an antiedema effect

per se [15].

Based on this double property (intravenous fluid and

antiedema effect), the present prospective randomized

study was designed to compare the efficacy and safety of

Totilac with RL for resuscitation of DHF/DSS children.

Our hypothesis was that sodium lactate could improve

endothelial cell function and decrease capillary leakage,

thus minimizing fluid overload.

Methods
Fifty children with severe DSS were enrolled in this pro-

spective, randomized, single-blind study (see Figure 1),

conducted in the Pediatrics Department of Hasan Sadikin

Hospital, Bandung, Indonesia, between May 2008 and April

2009. Patients were randomly assigned to RL or hypertonic

sodium lactate solution (HSL) groups. Randomization was

performed independently by using a table of random num-

bers and balanced blocks of four, with sealed opaque enve-

lopes sequentially numbered. The enrollment of patients

was performed by the pediatrician, and the assignment to

intervention, by the study coordinator.

The Ethics Committee of Hasan Sadikin Hospital

had approved this protocol before the study. Informed

consent had also been obtained from the patients’

relatives.

The intervention period ran for the first 12 hours of

treatment and was followed by a 12-hour observation

Table 1 Composition of Ringer lactate (RL) and the

hypertonic sodium lactate (HSL) solution Totilac

Hypertonic sodium
lactate

Ringer lactate

(HSL) (RL)

Content mM g/L mM g/L

Na+ 504.15 11.50 130.5 2.98

K+ 4.02 0.16 4.02 0.16

Ca2+ 1.36 0.050 0.67 0.024

Cl− 6.74 0.24 109.90 3.90

Lactate− 504.15 44.92 28.00 2.49

Total osmolarity (mosm/L) 1,020.42 273

Organic/inorganic osmolarity
(mosm/L)

504.15/516.27 28/245
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period (see Figure 2) extended to 48 hours for sVCAM-1

measurement. The outcome, complications, adverse events,

and concomitant treatments were recorded throughout the

entire hospital stay until discharge. Only pediatric patients

(2 to 14 years old) fulfilling the WHO criteria for DSS

and new to resuscitation treatment were eligible. Based

on anamnesis, physical examination, and/or laboratory

tests, patients with another viral or bacterial infection,

severe renal failure (creatinine >180 μM - because of

the high amount of sodium infused), chronic diarrhea

(because it may influence urine output), liver failure

(SGOT and SGPT >20 times normal), severe malnutrition

and diabetes mellitus (because they may change lactate me-

tabolism), and hematologic disorders (because hemostasis

was one studied parameter) were excluded.

Shock management

According to the randomization, eligible patients re-

ceived an initial bolus infusion of either HSL (5 ml/kg

BW) or RL (20 ml/kg BW) for 15 minutes (Figure 2). If

they did not recover from the shock rapidly with the first

bolus, a second loading infusion with the same solution

at the same dosage was infused once again. If the second

treatment failed with a persistent shock, patients received

hydroxyl-ethyl starch (HES, 130/0.40) infusion (20 ml/kg

BW in 15 to 30 minutes) with a maximum dose of 50 ml/

kg BW in 24 hours. Note that the WHO recommends

colloid solutions for profound or continuing shocks,

whereas HES administration was in routine practice, and

concern about its safety was not reported before this study

started.

If the shock was reversed, patients received a mainten-

ance dose of the studied solution for 12 hours: 1 ml/kg

BW/h of HSL, or decreasing doses of 10, 7, 5, and 3 ml/

kg BW/h of RL, based on patients' hemodynamic condi-

tions (heart rate, systolic blood pressure, urine output),

which corresponds to the standard protocol of DSS

management in Hasan Sadikin Hospital according to the

WHO recommendations. If the shock recurred within

the first 12 hours, the studied solution was infused once

again, as in the initial shock management. After the

12th hour (that is, during the follow-up period), both

groups received 3 ml/kg BW/h RL according to the

WHO recommendations. If the shock recurred during

the follow-up period, the standard protocol of DSS

management according to the WHO recommendations

was applied (RL infusion with HES administration if

necessary).

Studied parameters

As markers of hemodynamic status and tissue oxygen-

ation, blood pressure, heart and respiratory rates, Glasgow

Coma Scale score (GCS), body temperature, and urine

output were monitored before (T0) and after 15 and then

Figure 1 Profile of the randomized controlled trial.
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30 minutes, every hour until the hour 6, and then 9, 12,

18, and 24 hours after fluid administration.

Fluid infusion and output were measured and docu-

mented. Laboratory blood/plasma parameters including

hemoglobin, hematocrit, thrombocyte and leukocyte

counts, electrolytes (sodium, potassium, chloride), plasma

osmolality, lactate, glucose, albumin, total protein concen-

trations, SGOT, SGPT, creatinine, venous gas analysis,

prothrombin (PT), activated partial thromboplastin time

(aPTT), fibrinogen levels, and D-dimer were determined

after 0, 6, 12, and 24 hours. sVCAM-1 values were mea-

sured after 0, 24, and 48 hours with the ELISA method

(R&D Systems, Human sVCAM-1/CD106 Quantikine

ELISA Kit, catalog number DVC00). Any adverse events

or serious adverse events that occurred during the study

period were recorded and reported for all included

patients. All concomitant medications and their com-

plement, including dosages, were also documented.

Study end points

The primary end point was the effectiveness of HSL

to decrease endothelial cell inflammation assessed by

sVCAM-1 measurements during the first 48 hours of

DSS. Secondary end points considered the effectiveness of

HSL to restore hemodynamic and tissue-oxygenation

parameters, fluid balance, acid–base status, sodium and

chloride balances, as well as in-hospital survival.

Sample-size determination and statistical analysis

G*Power3.1 [16] was used to calculate the sample size

for a five-repeated-measure ANOVA with an alpha error

of 0.05, a power of 80%, a correlation among repeated

measures of 0.3, and an effect size of 0.3. The theoretical

sample size was n = 21 in each group. We chose to include

25 subjects per group.

Unless otherwise indicated, data are expressed as

mean ± SEM. Qualitative variables were analyzed by

using the Fisher Exact test (Table 2). The effect of DSS

treatment over time was analyzed with ANOVA for repea-

ted measures, indicating the significance of the different

treatments (treatment effect) and evolution (time effect)

(Table 3). Data exhibiting non-normal distribution

were analyzed with nonparametric unpaired (Mann-

Whitney) or paired (Wilcoxon) tests, as indicated in the

legends.

Results
Studied population

The 50 enrolled and randomized patients were included

in outcome and adverse-event analysis (intent-to-treat

analysis). Forty-six patients completed the protocol and

were fully analyzed (24 and 22 subjects in the HSL and

RL groups, respectively) whereas four patients were ex-

cluded: three for incomplete data collection and one for

withdrawal of consent. As shown in Table 2, because of

randomization, the two groups were not different before

Figure 2 Study flow chart.
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treatment in terms of nutritional status, severity of

disease, or baseline parameters.

Initial shock treatment and outcome

As shown in Table 3, no statistical difference was found

in the success rate of a single bolus infusion (P > 0.99) or

in shock recurrence within the first 12 hours (P = 0.14).

The needs of HES administration for initial shock treat-

ment or shock recurrence within the first 12 hours were

not different (P = 0.30 and P = 0.48 for initial and recurrent

shock, respectively). However, HES infusion was more

frequently used during the follow-up period (T12 to T24)

in the HSL group (5 versus 0), leading to a significantly

more frequent total HES administration (intervention and

follow-up periods) in the HSL group (10 versus 1,

P = 0.005).

No difference was noticed regarding the outcome. The

full recovery rate was similar in the two groups (P = 0.70).

Two patients in each group left the hospital on hospital

Table 2 Baseline quantitative data (mean (SEM))

HSL RL

n = 24 n = 22

Age, years 8.7 (0.6) 7.6 (0.7)

Body weight, kg 27.1 (3.0) 22.5 (2.0)

Height, cm 126.7 (4.4) 118.1 (3.8)

Sex ratio (F:M) 11:13 11:11

GCS 14.4 (0.3) 14.8 (0.2)

Systolic pressure, mm Hg (n = 9 + 9) 89.4 (4.7) 86.1 (3.7)

Diastolic pressure, mm Hg (n = 9 + 9) 61.1 (6.5) 65.6 (4.4)

Heart rate, beats/min 133.9 (4.8) 121.7 (3.7)

Respiratory rate, breaths/min 34.4 (2.2) 33.4 (1.7)

Temperature, °C 36.7 (0.2) 36.2 (0.2)

DHF grade III 9 9

DHF grade IV 15 13

Hematocrit, % 41.9 (0.93) 42.4 (1.2)

Hemoglobin, g/dl 14.5 (0.3) 14.7 (0.5)

Leukocyte, mm−3 6,217 (854) 6,000 (755)

Thrombocyte, mm−3 47,042 (7,693) 59,409 (7,421)

pH (venous) 7.40 (0.03) 7.37 (0.02)

pCO2 (venous), mm Hg 24.9 (1.5) 24.8 (1.4)

pO2 (venous), mm Hg, 55.6 (7.2) 66.9 (7.8)

CO3H
− (venous), mM 15.2 (0.9) 13.8 (0.7)

BE (venous), mM −7.6 (1.1) −10.3 (0.9)

Na, mM 129.8 (1.2) 128.1 (0.9)

K, mM 4.36 (0.14) 4.64 (0.17)

Cl, mM 94.3 (1.3) 95.8 (1.1)

Osmolality, mOsm/kg H2O 284.0 (4.6) 275.4 (1.8)

Glucose, mM 6.74 (0.37) 6.11 (0.43)

Lactate, mM 4.71 (0.67) 3.81 (0.85)

Creatinine, mg/dl 0.68 (0.06) 0.55 (0.04)

Albumin, g/L 32.8 (1.6) 34.5 (1.4)

Protein, g/L 59.3 (2.4) 62.2 (2.9)

SGOT μu.L−1 798 (422) 387 (106)

SGPT u/L 283 (158) 119 (28)

PT, seconds 12.0 (0.7) 11.5 (0.7)

aPTT, seconds 42.0 (4.5) 36.6 (2.4)

D-dimer ng/ml 627 (198) 455 (85)

Fibrinogen, mg/L 163.7 (14.6) 154.3 (16.7)

Table 3 Randomization, treatment, and evolution of DSS:

comparison between HSL and RL

Patients included 50

Randomization HSL RL P*

Patients randomized 25 25

Patients withdrawn 1 3 0.60

Patients studied 24 22

Per protocol analysis (n = 46)

Initial shock treatment (number of patients)

One bolus/two boluses 18/6 17/5 >0.99

HES infusions 4 1 0.30

Number of recurrent shocks within the first 12 hours (number of patients)

Yes/No 7/17 2/20 0.14

HES infusions 1 0 0.48

Total HES infusions (24 hours) 10 1 0.005

Concomitant therapies

Blood products

Thrombocytes 1 4 0.18

Cryoprecipitate 0 2 0.22

Fresh frozen plasma 1 3 0.34

Antibiotics 7 4 0.60

Furosemide 3 3 >0.99

Catecholamines 1 1 >0.99

Antipyretic 6 1 0.13

Total colloid (HES + plasma) (24 hours) 11 4 0.06

Intent-to-treat analysis (n = 50)

Outcome

Recovery 22 20 0.70

Forced discharge 2 2 >0.99

Death 1 3 0.60

Adverse events/complications

DIC 3 5 0.70

Encephalopathy 4 3 >0.99

Respiratory distress syndrome 1 0 >0.99

Acute liver failure 0 2 0.47

*Fisher Exact test.
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discharge against medical advice after the intervention

period. One versus three people died in the HSL and RL

groups, respectively (P = 0.60). All four died because of

irreversible/terminal shock and multiorgan failures with

disseminated intravascular coagulation.

Concomitant therapies did not significantly differ

between the two groups (Table 3). However, it could be

underlined that, due to the occurrence of hematologic

disorder, blood products (that is, thrombocytes, cryopre-

cipitate, and fresh frozen plasma) were required for 0ne

and five patients in the HSL and RL groups, respectively

(P = 0.09, Fisher Exact test), corresponding to two and

nine blood products in the HSL and RL groups, re-

spectively. Note that the frequency of use of colloids

(HES + fresh frozen plasma) was not significantly differ-

ent in the two groups.

Comparison of the two fluid regimens on clinical

parameters, intravascular volume expansion, and fluid

balance

As shown in Figure 3, systolic blood pressure had im-

proved very significantly at the end of the bolus infusion

(P < 0.0001) in both groups. This improvement persisted

through the intervention and follow-up periods in

both groups, with no difference between the two groups

(P = 0.90). Hematocrit decreased significantly (P < 0.0001)

in both groups, with no interaction between time and

groups. Note that no patient received red cell packs. The

urinary output rate (not shown) increased immediately after

the beginning of fluid administration (P < 0.0001), with a

more-pronounced effect in the RL group (P = 0.007).

According to the protocol, patients in the RL group

received much more fluid than those in the HSL group.

The difference increased with time during the interven-

tion period, reaching a four- to fivefold higher intake in

the RL group than in the HSL group after 12 hours

(115.9 ± 3.8 versus 26.2 ± 2.9 ml/kg/12 h, for RL and

HSL, respectively, P < 0.0001). During the follow-up period,

changes in fluid intake were parallel, as both groups then

received the same treatment. Cumulative urine output was

slightly but significantly (P = 0.018) higher in the RL group.

However, as shown in Figure 4, the difference in fluid bal-

ance between the two groups was significant (P < 0.0001).

The RL group accumulated 107 ± 7 ml/kg/24 h, whereas

the HSL group accumulated only 35 ± 10 ml/kg/24 h.

Note that Figure 4 takes into account all the fluids infused

(crystalloids, HES, and concomitant therapies, including

fresh frozen plasma). Interestingly, at the end of the inter-

vention period (H12), when the initial shock had already

been successfully treated for a couple of hours in the two

groups, the fluid balance did not differ from zero in the

HSL group (−0.2 ± 0.2 ml/kg/12 h; P = 0.95), whereas it

was positive in the RL group (+75.9 ± 6.0 ml/kg/12 h;

P < 0.0001). In other words, the fluid balance became

positive in the HSL group only after these patients had

been shifted from HSL to RL.
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Figure 3 Effect of treatments on systolic blood pressure and hematocrit. Open circles, RL; solid circles, HSL.
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Comparison of the two fluid regimens on biologic

parameters

The main biologic parameters are shown in Table 4,

before intervention, at hours 6, 12 (end of intervention),

and 24 (end of follow-up period). Venous blood pH

increased with both treatments during the intervention

period, with a higher increase in the HSL than in the RL

group. Increase in bicarbonate also was greater in the

HSL group. No difference between the two treatments

was found on plasma sodium concentration. Plasma po-

tassium concentration decreased over time in both groups,

with a larger decrease in the HSL group. Interestingly,

plasma chloride concentration significantly decreased be-

tween T0 and T12 in the HSL group and then increased

during the follow-up period, whereas it continuously

increased in the RL group. Although the amount of

infused lactate was quite substantial in the HSL group,

blood lactate concentration did not increase in either

the HSL or the RL group. We found no difference

between the two groups for plasma osmolality, blood

glucose concentration, creatinine, albumin, total protein,

or transaminases.

As regards hemostasis, the treatments did not affect

PT or aPTT, while they both brought down fibrinogen.

As seen in Figure 5, D-dimer did not significantly change

(P = 0.7701) after 24 hours in the RL group, whereas it

decreased in the HSL group (P = 0.0468), the difference

between the two groups at the 24th hour remaining insig-

nificant, however (P = 0.2117). sVCAM-1 did not change

in the RL group after 48 hours (P = 0.7089), whereas it

significantly and continuously decreased in the HSL group

(P = 0.0013 between T0 and T24, P = 0.0116 between

T24 and T48, P < 0.0001 between T0 and T48), with

a significant difference between the two groups at the

48th hour (P = 0.0024).

Comparison of the two fluid regimens on sodium and

chloride balance

As seen in Figure 6, cumulative sodium load was posi-

tive in both groups at any time and significantly higher

in the RL than in the HSL group at T6 (P = 0.0027) and

T12 (P = 0.0029). Indeed, despite a lower sodium concen-

tration in RL than in HSL (Table 1), the more-substantial

fluid infusion required led to a superior sodium load in

the RL group.

Chloride cumulative balance significantly increased

during the intervention (P = 0.0006) and the follow-up

period (P = 0.0019) in the RL group. On the contrary, it

significantly decreased (P = 0.0051) during the interven-

tion period in the HSL group. During the follow-up

period (that is, when RL was infused in both groups),

the chloride cumulative balance became positive in the

HSL group (P < 0.0001), but remained significantly lower

than in the RL group (P < 0.0001).

Discussion
It is well acknowledged that the dengue virus can lead to

endothelial cell dysfunction responsible for capillary leak-

age with fluid extravasation from intravascular bed toward

interstitial space. This leads to a severe hypovolemic shock

in the absence of relevant fluid loss such as vomiting or

diarrhea. In the present study, the recovery of such a

severe hypovolemic shock without (first 12 hours) or with

minimal (24 hours) net expansion of body fluids in the

HSL group (see Figure 4) strongly suggests that HSL treat-

ment favored a decrease of capillary leakage, allowing

interstitial fluid to reintegrate the vascular bed.

To the best of our knowledge, all the treatments

applied to DSS are symptomatic as regards shock or

hemorrhagic disorder correction, and etiopathogenic

treatments aiming at limiting the inflammatory response

or virus invasion are reputed to be unsuccessful. The

fact that sVCAM-1 decreased in patients receiving HSL

suggests that this treatment might have improved the

endothelial cell function.

Quite obviously, the plasma-expander effect of HSL

might be related to its hyperosmolarity because a similar

effect has been reported with hypertonic saline [17-19].

However, although HSL is hyperosmolar (see Table 1), it

is less hypertonic than a sodium-chloride solution with

the same osmolarity, because the monocarboxylate car-

rier allows lactate to cross the cellular plasma membrane

[20]. In other words, lactate is expected to leave the

intravascular bed to spread inside the cells. In agreement

with such a property, lactate concentration did not

increase in the HSL group.

Once into the cell, lactate is rapidly metabolized

(mainly in glucose or in CO2 plus H2O), whereas Na+ is

eliminated in urine. However, to maintain urine electro-

neutrality, negative charges must be eliminated with Na+,
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Figure 4 Effect of treatments on fluid balance. Open circles,

RL; solid circles, HSL.
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including Cl−, which results in a net negative chloride bal-

ance (see Figure 6). Because chloride loss was dramatically

higher than the decrease in plasma chloride concentration

(compare Figure 6 with Table 4), the net negative chloride

balance was done mostly at the expense of intracellular

chloride. Recent data on Na+, K+, and Cl− co-exchange

support a significant role of chloride balance on cell-

volume regulation [21-23]. Hypothesizing that the dengue

virus leads to endothelial cells swelling that in turn in-

creases endothelium permeability because of changes in

the cell shape, we propose that lactate might return the

cell volume back to normal, thus correcting capillary

leakage. Note that a negative chloride balance and a

decrease in cerebral edema have also been reported in

Table 4 Evolution of blood parameters at 0, 6, 12, and 24 hours after initiation of shock treatment expressed as mean

(SEM)

Treatment T0 T6 T12 T24 P treatment P time P interaction

Leukocytes, mm−3 HSL 6,217 (854) 5,600 (566) 6,665 (698) 7,100 (764) 0.862 0.001 0.844

RL 6,000 (755) 5,805 (842) 6,623 (816) 7,864 (1,016)

Thrombocytes, mm−3 HSL 47,042 (7,693) 44,583 (6,102) 40,348 (6,001) 48,773 (5,817) 0.297 0.016 0.529

RL 59,409 (7,421) 48,727 (5,870) 50,455 (6,583) 55,909 (4,867)

pH (venous) HSL 7.40 (0.03) 7.50 (0.01) 7.50 (0.02) 7.46 (0.01) <0.0001 <0.0001 0.100

RL 7.37 (0.02) 7.40 (0.01) 7.41 (0.01) 7.39 (0.01)

CO3H
− (venous), mM HSL 15.20 (0.87) 21.56 (1.04) 26.53 (1.19) 25.18 (0.73) <0.0001 <0.0001 <0.0001

RL 13.76 (0.72) 15.21 (0.86) 16.94 (0.72) 19.35 (0.85)

Na, mM HSL 129.8 (1.2) 129.8 (1.2) 130.0 (1.3) 130.6 (1.3) 0.935 0.013 0.081

RL 128.1 (0.9) 129.0 (1.0) 130.3 (0.8) 132.7 (1.3)

K, mM HSL 4.36 (0.14) 3.42 (0.13) 3.23 (0.11) 3.18 (0.11) <0.0001 <0.0001 0.001

RL 4.64 (0.17) 4.26 (0.10) 4.23 (0.16) 4.28 (0.15)

Cl, mM HSL 94.3 (1.3) 90.5 (1.2) 89.5 (1.5) 92.5 (1.1) <0.0001 0.003 <0.0001

RL 95.8 (1.1) 97.6 (1.0) 99.6 (1.1) 100.9 (0.9)

Osmolality, mOsm/Kg H2O HSL 284.0 (4.6) 277.9 (2.2) 278.5 (2.6) 276.4 (2.2) 0.240 0.416 0.104

RL 275.4 (1.8) 274.2 (2.4) 275.2 (1.5) 279.5 (2.6)

Glucose, mM HSL 6.74 (0.37) 6.56 (0.27) 6.60 (0.39) 5.72 (0.35) 0.003 0.001 0.355

RL 6.11 (0.43) 5.14 (0.27) 5.35 (0.33) 4.85 (0.29)

Lactate, mM HSL 4.71 (0.67) 2.94 (0.41) 2.93 (0.32) 1.65 (0.20) 0.313 <0.0001 0.183

RL 3.81 (0.85) 1.87 (0.30) 2.11 (0.44) 2.24 (0.54)

Creatinine, mg/dl HSL 0.677 (0.063) 0.569 (0.066) 0.631 (0.088) 0.607 (0.105) 0.070 <0.0001 0.552

RL 0.549 (0.039) 0.440 (0.023) 0.466 (0.030) 0.416 (0.023)

Albumin, g/L HSL 32.8 (1.6) 29.5 (1.1) 28.5 (1.1) 26.5 (0.9) 0.695 <0.0001 0.287

RL 34.5 (1.4) 28.5 (0.8) 28.5 (0.7) 27.6 (0.9)

Protein, g/L HSL 59.3 (2.4) 50.7 (2.3) 48.5 (2.6) 48.0 (1.8) 0.264 <0.0001 0.990

RL 62.2 (2.9) 53.1 (1.8) 51.3 (1.3) 50.2 (1.6)

SGOT u/L HSL 798 (422) 870 (383) 765 (373) 503 (191) 0.636 0.776 0.263

RL 387 (106) 512 (229) 631 (363) 656 (355)

SGPT u.L−1 HSL 283 (158) 258 (103) 245 (109) 185 (76) 0.678 0.934 0.267

RL 118 (27) 181 (87) 218 (122) 229 (119)

PT, seconds HSL 12.0 (0.7) 12.2 (0.8) 12.2 (0.6) 11.4 (0.5) 0.443 0.221 0.094

RL 11.5 (0.7) 11.4 (1.0) 13.6 (2.8) 17.8 (4.6)

aPTT, seconds HSL 42.0 (4.5) 49.4 (4.7) 50.6 (4.8) 39.9 (2.3) 0.179 0.386 0.117

RL 36.6 (2.4) 39.9 (2.5) 38.3 (3.4) 44.6 (7.9)

Fibrinogen, mg/L HSL 163.7 (14.6) 123.1 (10.9) 131.7 (11.1) 124.1 (7.2) 0.443 <0.0001 0.734

RL 154.2 (16.7) 117.6 (8.8) 110.5 (7.9) 118.4 (9.6)

Repeated measures ANOVA between HSL and RL: P treatment, effect of treatment; P time, effect of time; P interaction, interaction between treatment and time.
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traumatic brain-injured patients infused with sodium

lactate [15], whereas HSL has been shown to reduce the

number of intracranial hypertensive episodes after severe

traumatic brain injury [24].

From these considerations, it appears that HSL may

affect intra- versus extracellular fluid distribution in at

least two different ways: sodium-related hypertonicity

and electrogenic imbalance corrected by chloride efflux

from intracellular space.

There are several limitations to this study. The rate of

lactate infusion used in this work was based on previous

data indicating an average endogenous rate of lactate

turnover of 10 to 14 mmol/kg/24 h and plasma clearance

of about 10 to 14 ml/kg [25,26], as well as on previous

administration of lactate to patients [12,15]. Note that the

initial bolus infusion of HSL (5 ml/kg BW) was as effective

as the initial bolus infusion of RL (20 ml/kg BW) for the

acute shock management, as indicated by a similar initial

recovery, including the success rate of a single bolus

infusion.

However, the number of patients requiring HES for

the initial shock treatment was higher (although not sig-

nificantly different) in the HSL group. The fluid infusion

rate of HSL after boluses (1 ml/kg/h) or the duration of

the study period (during the first 12 hours) may have

been underestimated for some patients. Indeed, recurrent

shocks were more frequent (although not significantly so)

in the HSL group during the study period (first 12 hours).

Moreover, HES administration was required during the

follow-up period in the HSL group (that is, once sodium

lactate infusion had been stopped). This may suggest that

a higher rate of fluid infusion after boluses (for instance,

2 ml/kg/h) is required, or that the study period should be

extended for some patients. Note, however, that blood
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products were more frequently used in the RL group,

which accounts for a significant volume of perfusion and

may play down the difference in HES use between the two

groups. Indeed, considering the perfusion of colloids (HES

and fresh frozen plasma), no significant difference was

noted between the two groups.

The outcome was similar in the two groups, as were

the complications and the absence of any treatment-

related side effect. We noted a slightly higher mortality

in the RL group as compared with the HSL group, but

this difference was not significant. Indeed, because this

study was not powered to evaluate a beneficial outcome

(but only the physiological consequences of the two

treatments), a large multicentric study would be needed

to do so.

Conclusion
This randomized clinical trial has shown that the use of

hyperosmolar sodium-lactate solutions in the Dengue

shock syndrome allowed the treatment of such a hypo-

volemic shock with minimal fluid accumulation. Besides

the fact that this treatment helped prevent fluid over-

load, the reduction of sVCAM may have contributed to

the resolution of shock. Despite the preliminary nature

of our data, the putative mechanism of action of hyperos-

molar sodium-lactate solution is of sufficient interest to

justify a large-scale clinical trial.

Key messages

� Hyperosmolar sodium-lactate solutions allowed

the correction of dengue shock syndrome with

minimal fluid overload.

� This strongly suggests that hyperosmolar

sodium-lactate favored a decrease of capillary

leakage, allowing interstitial fluid to reintegrate the

vascular bed.
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