T. Schatton, U. Schutte, N. Frank, Q. Zhan, A. Hoerning et al., Modulation of T-Cell Activation by Malignant Melanoma Initiating Cells, Cancer Research, vol.70, issue.2, pp.697-708, 2010.
DOI : 10.1158/0008-5472.CAN-09-1592

J. Wei, J. Barr, L. Kong, Y. Wang, A. Wu et al., Glioma-Associated Cancer-Initiating Cells Induce Immunosuppression, Clinical Cancer Research, vol.16, issue.2, pp.461-473, 2010.
DOI : 10.1158/1078-0432.CCR-09-1983

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2943842

M. Santisteban, J. Reiman, M. Asiedu, M. Behrens, A. Nassar et al., Immune-Induced Epithelial to Mesenchymal Transition In vivo Generates Breast Cancer Stem Cells, Cancer Research, vol.69, issue.7, pp.2887-2895, 2009.
DOI : 10.1158/0008-5472.CAN-08-3343

A. Mantovani, S. Sozzani, M. Locati, P. Allavena, and A. Sica, Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes, Trends in Immunology, vol.23, issue.11, pp.549-555, 2002.
DOI : 10.1016/S1471-4906(02)02302-5

S. Biswas and A. Mantovani, Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm, Nature Immunology, vol.313, issue.10, pp.889-896, 2010.
DOI : 10.1016/j.ccr.2009.06.017

J. Yang, D. Liao, C. Chen, Y. Liu, T. Chuang et al., Tumor-Associated Macrophages Regulate Murine Breast Cancer Stem Cells Through a Novel Paracrine EGFR/Stat3/Sox-2 Signaling Pathway, STEM CELLS, vol.1, issue.141, pp.248-258, 2013.
DOI : 10.1002/stem.1281

M. Jinushi, S. Chiba, H. Yoshiyama, K. Masutomi, I. Kinoshita et al., Tumor-associated macrophages regulate tumorigenicity and anticancer drug responses of cancer stem/initiating cells, Proceedings of the National Academy of Sciences, vol.108, issue.30, pp.12425-12430, 2011.
DOI : 10.1073/pnas.1106645108

J. Mitchem, D. Brennan, B. Knolhoff, B. Belt, Y. Zhu et al., Targeting Tumor-Infiltrating Macrophages Decreases Tumor-Initiating Cells, Relieves Immunosuppression, and Improves Chemotherapeutic Responses, Cancer Research, vol.73, issue.3, pp.1128-1141, 2013.
DOI : 10.1158/0008-5472.CAN-12-2731

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3563931

J. Eyles, A. Puaux, X. Wang, B. Toh, C. Prakash et al., Tumor cells disseminate early, but immunosurveillance limits metastatic outgrowth, in a mouse model of melanoma, Journal of Clinical Investigation, vol.120, issue.6, pp.2030-2039, 2010.
DOI : 10.1172/JCI42002DS1

B. Reynolds and S. Weiss, Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system, Science, vol.255, issue.5052, pp.1707-1710, 1992.
DOI : 10.1126/science.1553558

T. Nguyen, K. Leishear, R. Finko, A. Kulp, S. Hotz et al., A tumorigenic subpopulation with stem cell properties in melanomas, Cancer Res, vol.65, issue.20, pp.9328-9337, 2005.

J. Mo, B. Sun, X. Zhao, Q. Gu, X. Dong et al., The in-vitro spheroid culture induces a more highly differentiated but tumorigenic population from melanoma cell lines, Melanoma Research, vol.23, issue.4, pp.254-263, 2013.
DOI : 10.1097/CMR.0b013e32836314e3

Y. Li, X. B. Tu, S. Wang, Y. Zhang, and X. , Cultivation and identification of colon cancer stem cell-derived spheres from the Colo205 cell line, Brazilian Journal of Medical and Biological Research, vol.45, issue.3, pp.197-204, 2012.
DOI : 10.1590/S0100-879X2012007500015

B. Morrison, J. Steel, and J. Morris, Sphere Culture of Murine Lung Cancer Cell Lines Are Enriched with Cancer Initiating Cells, PLoS ONE, vol.366, issue.10, p.49752, 2012.
DOI : 10.1371/journal.pone.0049752.t001

K. Lee, W. Han, J. Kim, I. Shin, E. Ko et al., The CD49d+/high subpopulation from isolated human breast sarcoma spheres possesses tumorinitiating ability, Int J Oncol, vol.40, issue.3, pp.665-672, 2012.

M. Held, D. Curley, D. Dankort, M. Mcmahon, V. Muthusamy et al., Characterization of Melanoma Cells Capable of Propagating Tumors from a Single Cell, Cancer Research, vol.70, issue.1, pp.388-397, 2010.
DOI : 10.1158/0008-5472.CAN-09-2153

B. Toh, X. Wang, J. Keeble, W. Sim, K. Khoo et al., Mesenchymal Transition and Dissemination of Cancer Cells Is Driven by Myeloid-Derived Suppressor Cells Infiltrating the Primary Tumor, PLoS Biology, vol.11, issue.9, p.1001162, 2011.
DOI : 10.1371/journal.pbio.1001162.s012

J. Condeelis and J. Pollard, Macrophages: Obligate Partners for Tumor Cell Migration, Invasion, and Metastasis, Cell, vol.124, issue.2, pp.263-266, 2006.
DOI : 10.1016/j.cell.2006.01.007

V. Chitu and E. Stanley, Colony-stimulating factor-1 in immunity and inflammation, Current Opinion in Immunology, vol.18, issue.1, pp.39-48, 2006.
DOI : 10.1016/j.coi.2005.11.006

S. Pyonteck, L. Akkari, A. Schuhmacher, R. Bowman, L. Sevenich et al., CSF-1R inhibition alters macrophage polarization and blocks glioma progression, Nature Medicine, vol.102, issue.10, pp.1264-1272, 2013.
DOI : 10.1038/nm.3337

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3840724

E. Giannoni, F. Bianchini, L. Masieri, S. Serni, E. Torre et al., Reciprocal Activation of Prostate Cancer Cells and Cancer-Associated Fibroblasts Stimulates Epithelial-Mesenchymal Transition and Cancer Stemness, Cancer Research, vol.70, issue.17, pp.6945-6956, 2010.
DOI : 10.1158/0008-5472.CAN-10-0785

G. Comito, E. Giannoni, C. Segura, P. Barcellos-de-souza, M. Raspollini et al., Cancer-associated fibroblasts and M2-polarized macrophages synergize during prostate carcinoma progression, Oncogene, vol.2, issue.19, pp.2423-2431, 2014.
DOI : 10.1016/j.stem.2007.11.005

N. Erez, M. Truitt, P. Olson, A. St, and D. Hanahan, Cancer-Associated Fibroblasts Are Activated in Incipient Neoplasia to Orchestrate Tumor-Promoting Inflammation in an NF-??B-Dependent Manner, Cancer Cell, vol.17, issue.2, pp.135-147, 2010.
DOI : 10.1016/j.ccr.2009.12.041

S. Biswas, L. Gangi, S. Paul, T. Schioppa, A. Saccani et al., A distinct and unique transcriptional program expressed by tumor-associated macrophages (defective NF-??B and enhanced IRF-3/STAT1 activation), Blood, vol.107, issue.5, pp.2112-2122, 2006.
DOI : 10.1182/blood-2005-01-0428

N. Bhola, J. Balko, T. Dugger, M. Kuba, V. Sanchez et al., TGF-?? inhibition enhances chemotherapy action against triple-negative breast cancer, Journal of Clinical Investigation, vol.123, issue.3, pp.1348-1358, 2013.
DOI : 10.1172/JCI65416DS1

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3582135

E. Connolly, J. Freimuth, and R. Akhurst, Complexities of TGF-?? Targeted Cancer Therapy, International Journal of Biological Sciences, vol.8, issue.7, pp.964-978, 2012.
DOI : 10.7150/ijbs.4564

N. Oshimori and E. Fuchs, The Harmonies Played by TGF-?? in Stem Cell Biology, Cell Stem Cell, vol.11, issue.6, pp.751-764, 2012.
DOI : 10.1016/j.stem.2012.11.001

M. Uhl, S. Aulwurm, J. Wischhusen, M. Weiler, J. Ma et al., SD-208, a Novel Transforming Growth Factor ?? Receptor I Kinase Inhibitor, Inhibits Growth and Invasiveness and Enhances Immunogenicity of Murine and Human Glioma Cells In vitro and In vivo, Cancer Research, vol.64, issue.21, pp.7954-7961, 2004.
DOI : 10.1158/0008-5472.CAN-04-1013

M. Datto, J. Frederick, L. Pan, A. Borton, Y. Zhuang et al., Targeted Disruption of Smad3 Reveals an Essential Role in Transforming Growth Factor ??-Mediated Signal Transduction, Molecular and Cellular Biology, vol.19, issue.4, pp.2495-2504, 1999.
DOI : 10.1128/MCB.19.4.2495

G. Ashcroft, X. Yang, A. Glick, M. Weinstein, J. Letterio et al., Mice lacking Smad3 show accelerated wound healing and an impaired local inflammatory response, Nat Cell Biol, vol.1, issue.5, pp.260-266, 1999.

V. Boutard, R. Havouis, B. Fouqueray, C. Philippe, J. Moulinoux et al., Transforming growth factor-beta stimulates arginase activity in macrophages. Implications for the regulation of macrophage cytotoxicity, J Immunol, vol.155, issue.4, pp.2077-2084, 1995.

C. Chang, J. Liao, and L. Kuo, Macrophage arginase promotes tumor cell growth and suppresses nitric oxidemediated tumor cytotoxicity, Cancer Res, vol.61, issue.3, pp.1100-1106, 2001.

E. Kasmi, K. Qualls, J. Pesce, J. Smith, A. Thompson et al., Toll-like receptor???induced arginase 1 in macrophages thwarts effective immunity against intracellular pathogens, Nature Immunology, vol.68, issue.12, pp.1399-1406, 2008.
DOI : 10.1038/ni.1671

B. Qian, Y. Deng, J. Im, R. Muschel, Y. Zou et al., A Distinct Macrophage Population Mediates Metastatic Breast Cancer Cell Extravasation, Establishment and Growth, PLoS ONE, vol.11, issue.8, p.6562, 2009.
DOI : 10.1371/journal.pone.0006562.s012

B. Qian and J. Pollard, Macrophage Diversity Enhances Tumor Progression and Metastasis, Cell, vol.141, issue.1, pp.39-51, 2010.
DOI : 10.1016/j.cell.2010.03.014

URL : http://doi.org/10.1016/j.cell.2010.03.014

G. Germano, R. Frapolli, C. Belgiovine, A. Anselmo, S. Pesce et al., Role of Macrophage Targeting in the Antitumor Activity of Trabectedin, Cancer Cell, vol.23, issue.2, pp.249-262, 2013.
DOI : 10.1016/j.ccr.2013.01.008

K. Hoek, O. Eichhoff, N. Schlegel, U. Dobbeling, N. Kobert et al., In vivo Switching of Human Melanoma Cells between Proliferative and Invasive States, Cancer Research, vol.68, issue.3, pp.650-656, 2008.
DOI : 10.1158/0008-5472.CAN-07-2491

T. Shree, O. Olson, B. Elie, J. Kester, A. Garfall et al., Macrophages and cathepsin proteases blunt chemotherapeutic response in breast cancer, Genes & Development, vol.25, issue.23, pp.2465-2479, 2011.
DOI : 10.1101/gad.180331.111

K. Yoshikawa, S. Mitsunaga, T. Kinoshita, M. Konishi, S. Takahashi et al., Impact of tumor-associated macrophages on invasive ductal carcinoma of the pancreas head, Cancer Science, vol.161, issue.Suppl 2, pp.2012-2020, 2012.
DOI : 10.1111/j.1349-7006.2012.02411.x

C. Steidl, A. Diepstra, T. Lee, F. Chan, P. Farinha et al., Gene expression profiling of microdissected Hodgkin Reed-Sternberg cells correlates with treatment outcome in classical Hodgkin lymphoma, Blood, vol.120, issue.17, pp.3530-3540, 2012.
DOI : 10.1182/blood-2012-06-439570

P. Gimotty, J. Botbyl, S. Soong, and D. Guerry, A Population-Based Validation of the American Joint Committee on Cancer Melanoma Staging System, Journal of Clinical Oncology, vol.23, issue.31, pp.8065-8075, 2005.
DOI : 10.1200/JCO.2005.02.4976

R. Heimann and S. Hellman, Clinical Progression of Breast Cancer Malignant Behavior: What to Expect and When to Expect it, Journal of Clinical Oncology, vol.18, issue.3, pp.591-599, 2000.
DOI : 10.1200/JCO.2000.18.3.591

K. Lolmede, L. Campana, M. Vezzoli, L. Bosurgi, R. Tonlorenzi et al., Inflammatory and alternatively activated human macrophages attract vessel-associated stem cells, relying on separate HMGB1- and MMP-9-dependent pathways, Journal of Leukocyte Biology, vol.85, issue.5, pp.779-787, 2009.
DOI : 10.1189/jlb.0908579

L. Gorelik and R. Flavell, Immune-mediated eradication of tumors through the blockade of transforming growth factorbeta signaling in T cells, Nature Medicine, vol.7, issue.10, pp.1118-1122, 2001.
DOI : 10.1038/nm1001-1118

T. Inge, S. Hoover, B. Susskind, S. Barrett, and H. Bear, Inhibition of tumor-specific cytotoxic T-lymphocyte responses by transforming growth factor beta 1, Cancer Res, vol.52, issue.6, pp.1386-1392, 1992.

A. Bonde, V. Tischler, S. Kumar, A. Soltermann, and R. Schwendener, Intratumoral macrophages contribute to epithelial-mesenchymal transition in solid tumors, BMC Cancer, vol.27, issue.1, p.35, 2012.
DOI : 10.1038/sj.onc.1210915

S. Mani, W. Guo, M. Liao, E. Eaton, A. Ayyanan et al., The Epithelial-Mesenchymal Transition Generates Cells with Properties of Stem Cells, Cell, vol.133, issue.4, pp.704-715, 2008.
DOI : 10.1016/j.cell.2008.03.027

K. Soda, The mechanisms by which polyamines accelerate tumor spread, Journal of Experimental & Clinical Cancer Research, vol.30, issue.1, p.95, 2011.
DOI : 10.1002/ijc.21621

V. Battaglia, D. Shields, C. Murray-stewart, T. Casero, R. et al., Polyamine catabolism in carcinogenesis: potential targets for chemotherapy and chemoprevention. Amino Acids, 2013.

R. Casero, J. Marton, and L. , Targeting polyamine metabolism and function in cancer and other hyperproliferative diseases, Nature Reviews Drug Discovery, vol.272, issue.5, pp.373-390, 2007.
DOI : 10.1038/nrd2243

C. Mills, J. Shearer, R. Evans, and M. Caldwell, Macrophage arginine metabolism and the inhibition or stimulation of cancer, J Immunol, vol.149, issue.8, pp.2709-2714, 1992.

W. Durante, L. Liao, S. Reyna, K. Peyton, and A. Schafer, Transforming Growth Factor-??1 Stimulates L-Arginine Transport and Metabolism in Vascular Smooth Muscle Cells : Role in Polyamine and Collagen Synthesis, Circulation, vol.103, issue.8, pp.1121-1127, 2001.
DOI : 10.1161/01.CIR.103.8.1121

R. Kalluri and M. Zeisberg, Fibroblasts in cancer, Nature Reviews Cancer, vol.59, issue.5, pp.392-401, 2006.
DOI : 10.1038/nrc1877

R. Lengagne, S. Graff-dubois, M. Garcette, L. Renia, M. Kato et al., Distinct Role for CD8 T Cells toward Cutaneous Tumors and Visceral Metastases, The Journal of Immunology, vol.180, issue.1, pp.130-137, 2008.
DOI : 10.4049/jimmunol.180.1.130

C. Tan, E. Tan, B. Luo, C. Huang, J. Loo et al., SMAD3 Deficiency Promotes Inflammatory Aortic Aneurysms in Angiotensin II-Infused Mice Via Activation of iNOS, Journal of the American Heart Association, vol.2, issue.3, p.269, 2013.
DOI : 10.1161/JAHA.113.000269

T. Sudo, S. Nishikawa, M. Ogawa, H. Kataoka, N. Ohno et al., Functional hierarchy of c-kit and c-fms in intramarrow production of CFU-M, Oncogene, vol.11, issue.12, pp.2469-2476, 1995.

I. Corraliza, M. Campo, G. Soler, and M. Modolell, Determination of arginase activity in macrophages: a micromethod, Journal of Immunological Methods, vol.174, issue.1-2, pp.231-235, 1994.
DOI : 10.1016/0022-1759(94)90027-2