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INTRODUCTION

Like other HIV-1 auxiliary proteins, Vpr is conserved within all the human (HIV-1, HIV-2)
and simian (SIV) immunodepbciency viruses. However, Vpr and homologous HIV-2, and
SIV Vpx are the only viral auxiliary proteins specibcally incorporated into virus particles
through direct interaction with the Gag precursor, indicating that this presence in the core
of the mature virions is mainly required for optimal establishment of the early steps of the
virus life cycle in the newly infected cell. In spite of its small size, a plethora of effects
and functions have been attributed to Vpr, including induction of cell cycle arrest and
apoptosis, modulation of the bdelity of reverse transcription, nuclear import of viral DNA in
macrophages and other non-dividing cells, and transcriptional modulation of viral and host
cell genes. Even if some more recent studies identiped a few cellular targets that HIV-1
Vpr may utilize in order to perform its different tasks, the real role and functions of Vpr
during the course of natural infection are still enigmatic. In this review, we will summarize
the main reported functions of HIV-1 Vpr and their signibcance in the context of the viral
life cycle.

Keywords: HIV-1 Vpr, reverse transcription, cell cycle, apoptosis, nuclear import

the viral life cycle in order to integrate previous and more recent

Thevprgene is conserved among human (HIV-1 and HIV-2) angtudies.

simian immunodebciency viruses (SIV) and encodes the regu-

latory viral protein R (Vpr), a small basic protein (14 kDa) offHE STRUCTURE OF Vpr

96 amino acids (Ogawa et al., 1989; Hattori et al., 1990; SteHfiv/-1 Vpris a relatively small protein composed of 96 amino acid
and Wong-Staal, 1991; Tristem et al., 1992). The importanceretidues Figure 2A (Checroune et al., 1995; Ramboarina et al.,

Vpr has been initially shown in macaque rhesus monkeys thzi04; Kamiyama et al., 2013). The secondary and higher-order
were experimentally infected with \gpr-mutated SIVmac, and structures of Vpr have been investigated by nuclear magnetic res-
exhibited a decrease in virus replication and a delay in diseas@nce (NMR), circular dichroism (CD), and Buorescence spec-
development progressiornLéng et al., 1993; Hoch et al., 1995)troscopy Zhao et al., 1994; Wang et al., 1996; Mahalingam et al.,
In vitro, in the absence of Vpr, HIV-1 replicates less efbciently i997; Kichler et al., 2000; Bruns et al., 2003; Morellet et al., 2003;
macrophages, a cell type that represents an important viral reséamiyama et al., 2013). According to NMR studies on the full-
voir by harboring the virus over long periods of tim&€¢nnor length Vpr protein dissolved in acidic aqueous-organic solvents
et al., 199n Despite its small size, HIV-1 Vpr has been show(Figure 2B (Morellet et al., 20083 the central region of the Vpr
to have several roles during the viral life cycle. Due to its speslypeptide chain folds into three amphiphilic helicéEhgrman
cibc incorporation into the viral particle by interaction with theet al., 2002; Bruns et al., 2003; Kamiyama et al., R(tese
Pr55Gag-derived p6 protein, Vpr is readily present upon entry biindled -helices span residues 17D33, 38D50, and 55B77 and
the virus into the cell, which speaks in favor for enrollment durare Ranked by unstructured Rexible N- and C-terminal domains
ing early steps of viral replication (sEegure 1). In this regard, that are negatively or positively charged, respectiviélyréllet
Vpr has been shown to infuence the reverse transcription @fal., 200R Four conserved proline residues at position 4, 10, 14,
HIV-1 via the interaction and recruitment of the human uraciland 35 which are subjected tis/trandsomerization are found
DNA glycosylase 2, an enzyme of the DNA repair machineiry the N-terminal domain (reviewed iBruns et al., 2003; Le
(Guenzel et al., 2012). A relationship that is not without controRouzic and Benichou, 20R49t was indeed reported that the cel-
versy since different research reports argue whether UNG2 migiiar peptidyl-propyl isomerase cyclophilin A was able to interact
rather have a negative impact or even no impact on HIV-1 replwith Vpr via prolines (position 14 and 35) for correct folding
cation (Schrofelbauer et al., 2005; Kaiser and Emerman, 2066the viral protein ander et al., 2003). The carboxy-terminal
Yang et al., 2007 Furthermore, Vpr also affects the nucleadomain of Vpr contains six arginine residues between positions
import of the viral DNA within the pre-integration complex 73 and 96 (se€igure 2A), and this domain shows similarity to
(PIC), the cell cycle progression, the regulation of apoptogisose of arginine-rich protein transduction domains. This might
and the transactivation of the HIV-1 LTR as well as host celbtentially explain the transducing properties of Vpr and its abil-
genes. ity to cross the cell membrane lipid bilayefi¢hler et al., 2000;
This review will be focused on the Vpr protein of HIV-1 andSherman et al., 2002; Coeytaux et al., J08@&ditionally, the
will give a summary of the multifunctional nature of Vpr duringthird helix of Vpr is rich in leucine residue$¢hYler et al., 1999
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FIGURE 1 | Vpr functions and early steps of the HIV-1 life cycle. effect on the accuracy of the reverse-transcription process, the nuclear
Schematic view of the early steps of the HIV-1 infection of a target cell. The import of the viral DNA as a component of the pre-integration complex, cell
functional events in which the Vpr protein is involved are highlighted. Vpr has cycle progression, regulation of apoptosis, and the transactivation of the
been shown to play multiple functions during the virus life cycle, including an HIV-LTR as well as host cell genes.

where one side of the helix presents a stretch of hydropholzsind cytopathogenic functions of VpiBéarnitz et al., 201 A
side chains that can form a leucine-zipper like moEfgure 2. more recent study reports that oligomerization of Vpr is essen-
This region was proposed to account for the formation of Vptial for incorporation into virus particles \(enkatachari et al.,
oligomers {Vang et al., 1996; Mahalingam et al., 1997; SchY2010Q. Moreover, it has been recently proposed that Vpr may
et al., 1999; Fritz et al., 200&nd for interaction with certain assume an antiparallel helical dimer with the thirehelices of
cellular partners (reviewed iRlanelles and Benichou, 2009 the two subunits facing each other, and the His71 and Trp54
Vpr has been shown to exist as dimers, trimers, tetramers apldy a crucial role in this dimer formationk@gmiyama et al.,
higher order multimers£hao et al., 1994 however it is still not 2013.
completely elucidated how the dimeric or multimeric states of the
protein affect the different functions of Vpr. A real-time studypr IS INCORPORATED INTO VIRUS PARTICLES
using a Bow cytometry Buorescence resonance energy transfeMpasis expressed at a late stage of the virus life cycle, but it is
conbrmed that Vpr self-associates within live cellsl{on and present during the early steps of infection in target cells since it
Lenardo, 200y Self-association was dependent on the hydroph@s packaged into virions that were released from the producing
bic patch that is located on the third-helix and mutations cells. The incorporation of Vpr occurs through a direct inter-
in this region did not impair the ability of Vpr to induce G2 action with the carboxy-terminal p6 region of tlgagencoded
arrest, suggesting that oligomerization of Vpr is not absoluteBr55Gag precursoB@chand et al., 1999; Paillart and Gsttlinger,
required for the functions of the protein. In addition, muta-1999; Selig et al., 1999; Jenkins et al., 20nTEhe integrity of
tions in the arginine-rich domain, such as R80A and R87/88#e -helices of Vpr is required for efbcient packaging into viri-
did not impair self-association but were unable to induce G@ns (Singh et al., 20Q00and a leucine-rich (LR) motif found in
arrest Bolton and Lenardo, 2007Therefore, it appears that Vpr the p6 region of the Pr55Gag precursor is directly involved in the
does not require oligomerization toward induction of the celinteraction with Vpr (Kondo and Gsttlinger, 1996; Selig et al.,
cycle blockage but the exposed hydrophobic amino acids in th&99; Jenkins et al., 2001a,b; Fritz et al., R0The Pr55Gag
amino-terminal helix-1 are important for the cell cycle arresp6 region has also been found to be phosphorylated during
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FIGURE 2 | Primary sequence and three-dimensional structure of the the GIn residue critical for Vpr binding to UNG2 and DCAF1 are highlighted in
HIV-1 Vpr protein. (A) Primary sequence of the Vpr protein from the blue and purple, respectively. (B) Three-dimensional structure of the HIV-1
HIV-1Lai strain. The 3 -helices are boxed in green. Domains and Leu Vpr protein (adapted from Morellet et al., 2003). The three -helices (17933,

residues of Vpr involved in the nuclear import (black lines) and nuclear export 38D50, 55D77) are colored in green, respectively; the loops and Rexible
(Leu in red) of proteins are indicated. The Trp residue in position 54 as wellas ~ domains are in blue.

HIV-1 infection by atypical protein kinase Giemonnot et al., which may represent 275 molecules of Vpr per virion. More
2009 regulating the incorporation of Vpr into HIV-1 virions recently it has been shown that the HIV-1 Pr55Gag precursor
and thereby supporting virus infectivityK(idoh et al., 201} induces the recruitment of Vpr oligomers to the plasma mem-
After assembly and proteolytic cleavage of Pr55Gag in matixane ritz et al., 201)) Vpr oligomerization has been found to
capsid, nucleocapsid (NCp7), and p6 mature proteins, Vpr i essential for binding of Vpr to Pr55Gag and for its accumu-
recruited into the conical core of the virus particleqcola et al., lation at the plasma membrane early during Pr55Gag assembly,
2000; Welker et al., 20p@here it is tightly associated withbut the exact role of these oligomers is not certain yeit{ et al.,

the viral RNA ¢hang et al., 1998; De Rocquigny et al., J0002010.

Interestingly, Vpr displays a higher avidity for NCp7 than for The incorporation of Vpr has also been used as a unique tool
the mature p6 protein Pong et al., 1997; Selig et al., 1999p target cargoes such as cellular and viral proteins or drugs into
Jenkins et al., 20019,bSince p6 is excluded from the virionviral particles (Vu et al., 1995; Yao et al., 1999; Fritz et al., 010
core (Accola et al., 2000; Welker et al., 2)J0¢pr could switch This property found extensive use in studies that evaluated the
from the p6Gag region of the precursor to the mature NCprespective functions of integrase (IN) and reverse transcriptase
protein in order to gain access to the core of the infectioU®RkT) during virus replication by expressing Vpr-IN and Vpr-RT
virus particle budding at the cell surface. In any case, p6 Hasions intransin virus-producing cells\(Vu et al., 1997, 1999;
been reported to show a high afpnity for membrane bilayetsu et al., 1999 Furthermore, Vpr fused to the green Buorescence
which substantially increases the interaction between p6 and \fpotein (GFP) has been used to tag HIV particles in order to fol-
(Salgado et al., 20p9lt was estimated that Vpr is efbcientlylow intracellular virus behavior during the early intracellular steps
incorporated in HIV-1 virions with a Vpr/Pr55Gag ratio of1:7 of infection in target cellsl(oeb et al., 2002; Steffens and Hope,
(Knight et al., 1987; Cohen et al., 1990; Welker et al., R00R003; Fritz et al., 20}0
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Vpr AND THE CELL CYCLE involved in the cell cycle regulation are closely regulated and their
Among the range of functions of the Vpr protein, thespatio-temporal distribution is primordial for the continuity of
Vpr-dependent G2 arrest activity was extensively explored sirige cell cycle. More recently, interactions between Vpr and chro-
it was described for the brst time in 1993¢( et al., 1995; Jowettmatin have been reported3glzile et al., 2010; Shimura et al.,
et al., 1995; Re et al., 1995; Rogel et al., JI9&e Vpr pro- 201J). Vpr can cause epigenetic disruption of heterochromatin
tein encapsided into HIV-1 virions is able to block proliferatiorby inducing the displacement of heterochromatin protein 1-
of newly infected T lymphocytes. Following infection, these ce(ldP1- ) through acetylation of the histone H3 and causes prema-
accumulate at the G2-M phase and show a 4N DNA conteritire chromatids separation and consequently G2 ar@strura
The Prst studies proposed that the presence of Vpr leads to tHeal., 201). The interaction between Vpr and the chromatin
accumulation of the hyperphosphorylated form of the cyclinshould target and activate the ataxia telangiectasia mutated and
dependent kinase CDC2 (the complex p34 cdc2/cyclin B). THRad3-related kinases ATM/ATR, two of the main sensors of the
inactive form of the complex would be able to block the cell cyctell cycle Koundrioukoff et al., 200yt The link between ATR and
before the mitosis. the Vpr-dependent G2 arrest was initially reported by Roshal et al.

This cytostatic function of Vpr is well conserved among pri¢Roshal et al., 200%for review on ATR pathway, se& rensen
mate lentivirusesHlanelles et al., 1996; Stivahtis et al., J9@atd and SyljuGEsen, 201The ATR and ATM proteins control the
could be a strategy used by HIV and SIV to improve viral repl52 arrest provoked by DNA damage but it is controversial if Vpr
cation and protein expression, and even to reactivate the virtgally causes DNA damage or just mimics this damage and acti-
through an epigenetic control of the LTR promoterap et al., vates some sensors involved in this procédsy et al., 200R
1998; Thierry et al., 2004The biological signibcance of this cellt was reported that the inhibition of ATR abrogates the Vpr-
cycle arrest during the natural infection is not well understoodiependent G2 arrest. Following ATR activation by Vpr, Chkl
but the HIV-1 LTR seems to be more active in the G2 phags, activated through phosphorylation and required for the G2
implying that the G2 arrest may confer a favorable cellular envii¢rest (i et al., 201)) Clearly, Vpr acts on the cell cycle by a
ronment for efbcient transcription of HIV-1Goh et al., 1998In  cascade of reversible phosphorylations. The expression of Vpr
agreement, the Vpr-induced G2 arrest correlates with high lewasirrelates with inactivation of the p34/cdc2 CDK1 kinase asso-
of viral replication in primary human T cells. Overexpressiogiated with cyclin B. Cdc2 is normally activated by the cdc5
of dominant negative mutant of the p34 cdc2 kinase shows thaliosphatase which is inactive in its hypophosphorylated form
Vpr-induced G2 arrest correlates with HIV-1 activatio¢h in Vpr-expressing cellsHe et al., 1995; Re et al., 199Whereas
et al., 1998 Vpr might also be involved in virus activationWeel inhibits the cdc2 kinaseS{rensen and SyljuEsen, 012
through other interactions such as the formation of a compleXpr seems to be able to directly activate the Weel protein by
with p53 and the transcription factors SpWvang et al., 1995; binding to its ONO lobe but this interaction is not sufpcient for
Sawaya et al., 1998This complex could lead to the activationinduction of the G2 arrest{amata et al., 20)8However, other
of the p21/WAF promoter resulting in the transactivation of th&ey regulators of the cell cycle interacting with Vpr could be
viral LTR (Cui et al., 200§ Using a human hematopoietic stemmembers of the 14-3-3 protein family<{no et al., 200pwhich
cell-transplanted humanized mouse model, it was recently sholind phosphorylated serine/threonine proteins such as the cell
that Vpr causes G2 cell cycle arrest and apoptosis predominagygle regulators Weel, Cdc25, and Chk1. Consequently, 14-3-3
in proliferating CCR3 CD4+ T cells, which mainly consist of could regulate activities and distribution of these proteinsi{ez-
regulatory CD4 T cells (Tregs), resulting in Treg depletion andsirona et al., 1999; Hermeking and Benzinger, J00hese
enhanced virus production during acute infectiomvivo (Sato authors revealed that overexpression of 14-3-3 leads to an increase
etal., 201} In addition, recent results just published byguette of the cell cycle arrest in the presence of Vpr while the absence of
et al. (2014show that the interaction of Vpr with the structure- this scaffolding protein reduces the Vpr-induced activity. Another
specibc endonuclease (SSE) regulator SLX4 complex (SLX4cstndy revealed how Vpr disrupts 14-3-8om centrosome and
is crucial for the G2-arrest activity but also for escape of HIV4ihcreases its association with the importinCyclin B1, and Cdk1
from innate immune sensing in infected cells. (Bolton et al., 2008

Some studies try to correlate the Vpr structure with cell cycle Today, almost all the new studies about the Vpr-induced G2
regulation. Historically, this function of Vpr was associated withrrest try to identify the potential target of Vpr degraded by
the helix-3 and the Rexible C-terminal part of the proteidrzio the proteasome machinery. Indeed, several groups clearly showed
et al., 1995; Mahalingam et al., 1997; Chen et al., )18d&me that Vpr connects the DCAF1 adaptor of the Cul4A ubiquitin
key phosphorylations of the C-terminus part have also been asgase to a so far unidentiped host target protein linked to the
ciated with the G2 arrest, such as phosphorylation of the Ser@2 arrest Belzile et al., 2007; DeHart et al., 2007; Le Rouzic
residue (se€igure 2A (Zhou and Ratner, 2000Vpr is mainly et al., 2007; Schrofelbauer et al., 20WFirst, the interactions
localized in the nucleus and at the nuclear envelope where pbetween Vpr and cullins 1 and 4 (Cull, Cul4), belonging to the
vious reports indicated it could induce herniations and burstingsbiquitin ligase complex, were reportedhrofelbauer et al.,
of the nuclear membrane and even defects in the nuclear lamip@07). Then, the Vpr-binding protein (VprBP) was described
(de Noronha et al., 2001; SSrgel et al., 20These morpho- as a substrate specibcity module in Cul4 and DDB1 (damaged-
logical modibcations could impact several nuclear factors aBiNA specibc binding protein 1)-based ubiquitine ligase E3
redistribute a large range of proteins from the nucleus to the cytoemplexes Angers et al., 2006; He et al., 2006; Higa et al.,
plasm leading to alteration of the cell cycle. Indeed, the cycliG806a; Jin et al., 20p6Furthermore, other teams described a

Frontiers in Microbiology | Virology March 2014 | Volume 5 | Article 127 | 4



Guenzel et al. HIV-1 Vpr protein

larger complex where Vpr was associated with Cul4A, DDBdlso targeted by Vpr, since Vpr can get access to the extra-
Rbx2/Rocl and an ubiquitin-conjugating enzyme or E2. At theellular compartment like a soluble proteifréiss et al., 1990;
same time VprBP was renamed DDB1-and Cul4-associated facinmins and Badley, 2010; Abbas, 2018 previous model

tor (DCAF)-1 (Belzile et al., 2007; DeHart et al., 2007; Hreckar Vpr-induced apoptosis proposed that Vpr would be able to
et al.,, 2007; Le Rouzic et al., 2007; Schrofelbauer et al., 2®ind the WxxF motif of the transmembrane adenine nucleotide
Tan et al., 2007; Wen et al., 200The Cul4-DDB1-E3 ligase transporter (ANT) protein exposed in the inner membrane of
complex can bind several DCAFs and seems involved in tméitochondria.Jacotot et al. (2000, 200Were the brst to detect
maintenance and control of the genome stability, DNA replicdhis interaction and found that Vpr could also bind to another
tion and cell cycle check point contro5(igasawa et al., 2005member of the permeability transition pore complex (PTPC), the
Higa et al., 2006b; Wang et al., 2)0Erom these studies, avoltage-dependent anion channel (VDAC). This team showed the
model where Vpr binds the Cul4-DDB1-DCAF1 E3 ligase toapacity of a synthetic Vpr polypeptide to trigger permeabiliza-
trigger the degradation of a putative protein responsible for then of the mitochondrial membrane resulting in the collapse of
G2 arrest has emergedd¢hart and Planelles, 2008n this the mitochondrial transmembrane potential. Following perme-
model, Vpr uses two distinct interfaces for binding, one foabilization of both inner and outer mitochondrial membranes
the attachment to VprBP/DCAF1 and the other for the puta¢Ghiotto et al., 201)) the release of pro-apoptotic proteins like
tive substrate protein. Vpr binds DCAF1 through the LR motithe cytochrome ¢ forms the apoptosome with the caspase 9
found between amino acids 60 and 68 while the C-terminahd Apaf-1 and allows recruitment of caspase 3. Bax, another
basic Rexible region binds to the substrate to be ubiquitinylatgare forming complex protein should also be involved in the
and degraded and responsible for G2 arre8igo et al., 1994; Vpr-induced cell death since a conformational change and acti-
DeHart et al., 2007; Le Rouzic et al., 2DWRecentlyBelzile et al. vation of Bax was detected in apoptotic cells expressing Vpr
(2010) proposed that Vpr is present in the nucleus and moréAndersen et al., 2006In this study, the authors character-
specibcally inside nuclear foci where it is associated with VprBBd cell death in mice, and described that ANT may promote a
and the DDB1-CUL4A-E3 ubiquitine ligase. These foci colocalecrotic cell death rather than apoptosis.

ize with DNA repair foci containing proteins such agli2AX It was indeed discussed whether the Vpr-induced G2 arrest
and RPA2. This association may lead to the recruitment and thas linked to the observed apoptosis in Vpr expressing cells.
degradation of a chromatin-bound substrate via a K48-linkeBarlier, some studies concluded that Vpr-induced apoptosis was
polyubiquitinylation Belzile et al., 20)@hich activates the key independent of the G2 arrest activitilichizawa et al., 20003,b
protein ATR and the G2 arrest. Finally, a new essential actorghfowing that a C-terminal truncated form of Vpr still induced
the Vpr-dependent G2 arrest, the SSE regulator SLX4com lag®ptosis but did notinduce G2 arrest. However, others and more
been recently identibed by proteomic analysisguette et al., recent studies found a correlation between both Vpr activities
2019. Vpr activates SLX4com through direct interaction wittand suggested that apoptosis was a consequence of the prolonged
SLX4 leading to the recruitment of VprBP and the kinase-acti&? arrest {ndersen et al., 2006According to Stewart and col-
PLK1. This association would lead to the cleavage of DNA lgagues, apoptosis would happen in cells after the G2 arrest as a
SLX4-associated MUS81-EME1 endonucleases. Vpr activationasfsequence of the blockage, and this was observed in human
premature MUS81-EMEL induces accumulation of FANCD?2 fobibroblasts, T cell lines, as well as primary peripheral blood lym-
and consequently DNA intermediates cleavage and replicatiphnocytes $tewart et al., 1997, 199%ccordingly, Zhu et al.

stress. (2001) showed that treating cells with caffeine, an inhibitor of
both ATM and ATR, which are key proteins involved in cell cycle
Vpr AND APOPTOSIS control, abrogated both G2 arrest and apoptosis. Trying to under-

Acute phase of AIDS is characterized by a net decrease ef CD4stand this ATR-dependent mechanism, subsequent studies from
cells, and the hallmark of the chronic phase is a gradual decretimesame team described an activation of the DNA repair enzyme
of the peripheral CD# T cells. While the virus mainly targetsBRCAL leading to the regulation of the growth arrest and DNA
lymphocytes and macrophages, no depletion of macrophages dasmage protein 45(GADDA45 ) involved in the cell death pro-
been reported and these terminally-differentiated cells may rathess Limmerman et al., 2004; Andersen et al., 20Moreover,
serve as virus reservoirs. The reason why infected macrophagese cell cycle regulators such as Weel and Chkl could also
were not susceptible to apoptosis has been recently exploreel.involved in the Vpr-dependent apoptosis pathway. The Vpr-
Using macrophage-like cells derived from differentiated THRdependent phosphorylation of Chk1, an event that begins during
CD4+ myeloid cells, a recent report showed that Vpr is not abl® phase of the cell cycle, could also trigger apoptasist(al.,
to downregulate the anti-apoptotic protein clAP1R2y(sca et al., 2010.
2012. HoweverMishra et al. (2007previously revealed the pos- Furthermore, it was reported that Vpr may impact the
sibility that the C-terminal part of Vpr could induce apoptosis inmmune system homeostasis by stimulating the secretion of TNF-
monocytes via a JINK-dependant pathway. by dendritic cells, resulting in apoptosis of CB8T cells
Although different HIV-1-induced pathways for apoptosigMajumder et al., 2007 Vpr could also increase expression of the
induction have been described, Vpr appears as one of tN&KG2D stress ligand in CB4 T cells promoting their destruc-
main actors of the cell death observed during HIV-1 infedion by the Natural Killer (NK) cells\(Vard et al., 2009; Richard
tion. However, it is still controversial how Vpr induces apoptosist al., 2010 According toWard et al. (2009)this mechanism
and/or necrosis. Moreover, uninfected bystander T cells can tguses a link between the G2 arrest and the apoptosis since
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they showed NKG2D expression is dependent of ATR activatibNA. The inclusion of uracil in DNA can occur either by mis-
by Vpr. incorporation of dUTP or by cytosine deamination. While the
Finally, some studies revealed that 40D50% of HIV-1 seropdBip residue in position 54 located in the exposed loop connecting
tive patients have neurocognitive disordefsi¢es and Ellis, 2007;the second and the third-helix of HIV-1 Vpr has been shown
Jones et al., 2007; Harezlak et al., 3panhd different theo- to be critical to maintain the interaction with UNG2, the Vpr-
ries have been proposed to explain these neurological disordeiading site was mapped within the C-terminal part of UNGZ2,
Among the Vpr effects, some hypothesized that extracellular V@and occurs through a WxxF motif. So far, three distinct cellu-
might be able to enter into neuronsk0m et al., 200Pwhere it lar partners of Vpr were known to contain a WxxF motif: the
can cause apoptosi®nes et al. (200Tested the effect of soluble TFIIB transcription factor, the adenosine-nucleotide translocator
Vpr in neurons and detected apoptosis involving cytochrome(ANT) and UNG2 (as reviewed ifilanelles and Benichou, 2009
release, p53induction, and activation of caspase-9. This study &lssvever, the WxxF motif is not sufbcient for Vpr binding, since
suggested that Vpr triggers the release of the inBammatory Iloer cellular Vpr-interacting proteins, such as DCAF1 or DICER
cytokine by astrocytes which could affect neuron survival. Mofer example, still bind to Vpr independently of the presence of a
recently, it was shown that Vpr could also act on the glycolytiwxxF motif within their primary sequenceBglzile et al., 2007;
pathway of astrocytes leading to secretion of stress moleculesiart et al., 2007; Le Rouzic et al., 2007; Schrofelbauer et al.,

(Ferrucci et al., 2033 2007; Casey Klockow et al., 2013
Some authors suggested that the association of Vpr with
Vpr AND THE REVERSE TRANSCRIPTION UNG?2 in virus-producing cells allows the incorporation of a

After virus entry, the viral core is released into the cytoplasm oétalytically active enzyme into HIV-1 particles where UNG2
the target cell where the reverse transcription of the viral RNAay directly inBuence the reverse transcription accurznsky
takes place within a large nucleoprotein compl&arfiet and et al., 2000; Chen et al., 2Q04&nd this plays a specibc role in
Haseltine, 1991; Bukrinsky et al., 1993; Miller et al., 1997; Fast#i modulation of the virus mutation rate. The model support-
and Goff, 2001; Nermut and Fassati, 2003; Lyonnais et al.).2018g the direct contribution of incorporated UNG2 in the reverse
This reverse transcription complex (RTC) contains the two copigsnscription process was demonstrated by using an experimental
of viral RNA and the viral RT, IN, NCp7, Vpr and a few moleculesystem in which UNG2 was recruited into virions independently
of the matrix protein. Itis generally believed that the reverse tranf Vpr. UNG2 was expressed as a chimeric protein fused to the
scription process is initiated in virus particles and then completeég-terminal extremity of the VprWw54R mutant, a Vpr variant
in the cytoplasm after the virus has entered into the target céflat fails to recruit UNG2 into virions and to inf3uence the virus
(Figure 1). The reverse transcription process is likely to take placeutation rate, even though it is incorporated as efbciently as
in parallel during both virus uncoating and trafbcking througtthe wild-type Vpr protein. The VprWw54R-UNG2 fusion is also
the cytoplasm (for reviews, seéeff, 200iandPomerantz, 2000 efpciently packaged into HIV-1 virions and can restore a muta-
Several studies conbrmed that Vpr co-localizes with the vitan rate equivalent to that observed with wild-type Vpr, both
nucleic acids and IN within puribed HIV-1 RTC&4#ssati et al., in actively dividing cells and in MDMs. In agreement with this
2003; Nermut and Fassati, 2003; Steffens and Hope), 2808 phenotype on the virus mutation frequency, it was bnally docu-
remains associated with the viral DNA within 4D16 h after infemented that the Vpr-mediated incorporation of UNG2 into virus
tion (Fassati and Goff, 20R1nterestingly, Vpr has recently beenparticles contributed to the ability of HIV-1 to replicate in pri-
reported to be essential for unintegrated HIV-1 gene expressiorary macrophages. When the VprW54R variant was introduced
andde-novavirus production in a virus replication pathway uti- into an infectious HIV-1 molecular clone, virus replication in
lizing RT DNA products that failed to integrat®¢on and Chen, macrophages was both reduced and delayed. Although it was pro-
2003; TrinitZ et al., 20)3 posed that the viral integrase was also able to mediate interaction
In addition to a potential role in the initiation step of the with UNG2 (Priet et al., 2008 Vpr seems to be the main viral
reverse transcription procesStérk and Hay, 1998it has been determinant that allows for the incorporation of UNG2 into virus
shown that Vpr modulated thén vivo mutation rate of HIV- particles. However, further analyses are required to document the
1 by infBuencing the accuracy of the reverse transcription. Thature of interactions between UNGZ2, Vpr, IN as well as RT both
HIV-1 RT is an error-prone RNA-dependent DNA polymerasén virus-producing cells and in target cells.
and quantibcation of then vivo rate of forward virus muta- Other studies also conbrmed that UNG2 was efbciently
tions per replication cycle revealed that the mutation rate wascruited into virus particles Kriet et al., 2005; Kaiser and
4-fold higher in the absence of Vpr expression when measuredierman, 2006; Yang et al., 2007; Jones et al.)),2inticat-
in dividing cells using a genetically engineered systéiaméky ing that this recruitment might inuence the accuracy of the
and Yemin, 1995; Mansky, 199&urthermore, analysis in non- reverse transcription process and has a positive inBuence on viral
dividing cells showed that this phenotype is even more proeplication Chen et al., 2004; Priet et al., 2005; Jones et al.,
nounced in primary monocyte-derived macrophages (MDMs}010. Interestingly, it has been recently reported that HIV-1
leading to a 16-fold increase of the HIV-1 mutation frequenclPNA generated in infected macrophages and CD4-positive T
(Chen et al., 2004 Strikingly, this activity correlates with thecells is heavily uracilated/@n et al., 2001 However, the spe-
interaction of Vpr with the nuclear form of uracil DNA glycosy-cibc role of UNG2 incorporation into virions was challenged by
lase (UNGZ2) (lansky et al., 2000an enzyme of the base excisiorother studies &chrofelbauer et al., 2005; Kaiser and Emerman,
repair system that specibcally removes the RNA base uracil frafd6; Yang et al., 200 While the specibcity of the interaction
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between Vpr and UNG2 was not questioned, these studies sogacrophages, it is worth noting that non-dividing cells express
gested a detrimentalSchrofelbauer et al., 2005; Yang et alow levels of UNG and contain relatively high levels of dUTP
2007; Eldin et al., 20)%r dispensable{aiser and Emerman, (Chen et al., 2002 Similarly, most non-primate lentiviruses,
2009 effect of UNG2 on virus replication. In the model sug-such as feline immunodebciency virus (FIV), caprine-arthritis-
gesting a detrimental effect on UNG2 on virus replication, Vpencephalitis virus (CAEV) and equine infectious anemia virus
was shown to induce the proteasomal degradation of UNG2 (BIAV), have also developed an efbcient strategy to reduce accu-
virus-producing cells in order to prevent its recruitment intomulation of uracil into viral DNA. These lentiviruses encode
virus particles $chrofelbauer et al., 2005, 2007; Eldin et aand package a viral-encoded dUTP pyropshophatase (dUT-
2013. It has also been reported that the Vpr-UNG2 interacPase) into virus particles, an enzyme that hydrolyzed dUTP to
tion temporarily impairs the uracil excision activity of UNG2dUMP, and thus maintains a low level of dUTP. Interestingly,
in infected cells Eldin et al., 2013 However, other data havereplication of FIV, CAEV, or EIAV that lack functional dUT-
indicated that the Vpr-induced reduction of endogenous UNGPase activity is severely affected in non-dividing host cells
observed in HIV-1 infected cells was not solely related to prée.g., primary macrophages). Taken together, these results indi-
teasomal degradation_fngevin et al., 2009; Nekorchuk et al.cate that uracil misincorporation in viral DNA strands dur-
2013 and that UNG2 might not be responsible for the degraing reverse transcription is deleterious for the ongoing steps
dation of HIV-1 DNA containing misincorporated dUTP which of the virus life cycle. The presence of a viral dUTPase or a
prevents viral integration\{feil et al., 2013 More recently, it cellular UNG will prevent these detrimental effects for replica-
has been argued that incorporation of UNGZ2 into HIV-1 partition of non-primate and primate lentiviruses in macrophages,
cles may not be detrimental for virus infection in target cells buespectively.
rather has a positive impact on virus replication and virus infec- Finally, it is intriguing to note that two viral auxiliary pro-
tivity achieved through a non-enzymatic mechanism mappingins from HIV-1, Vpr and Vif, can both inRuence the bdelity
within a 60-amino-acid long domain located in the N-terminalof viral DNA synthesis. The Vif protein forms a complex with
region of UNG2 (Guenzel et al., 20)2Anterestingly, this domain the cellular deaminase APOBEC3G thereby preventing its encap-
is also required for interaction of UNG2 with the p32 subsidation into virions Sheehy et al., 2002; Lecossier et al., 2003;
unit (RPA2) of the replication protein A complexN@gelhus Mangeat et al., 2003; Mariani et al., 2003; Stopak et al.,)2003
et al., 1997; Otterlei et al., 1999; Mer et al., 2000; De Silva awmkile Vpr binds the DNA repair enzyme UNG2. In this context
Moss, 2008 It was observed that enforced virion recruitment oft was suggested that incorporation of UNG2 into viral parti-
UNGZ2, through UNG2 overexpression in virus producing cellgjes would have a detrimental effect on reverse transcription by
similarly inBuenced infectivity of X4 and R5 HIV-1 strains inntroducing a basic sites into viral DNA in regards to uracil
transformed cell lines and MDMs, respectivelyugnzel et al., residues resulting from cytosine deamination by the cytidine
2012, which stands in contrast to another report suggesting thaeaminase APOBEC3Gc¢hrofelbauer et al., 2005; Yang et al.,
UNG2 was exclusively required for efpcient infection of primarg007. While the specibc role of UNG2 in the antiviral activ-
cells by R5-tropic virusesidnes et al., 20).0Strikingly, viruses ity of APOBEC3G was not directly questionedcfirofelbauer
produced from cells depleted of endogenous UNG2 and RPAR al., 200} others reported data indicating that the antivi-
resulted in signibcantly reduced infectivity and replication, thel activity of overexpressed APOBEC3G was patrtially affected
latter evidenced by a reduced amount of viral transcripts meeahen viruses were produced in UNG2-depleted 293T célla(
sured during the reverse transcription processiénzel et al., et al., 200y, However, these data are in apparent contradiction
2019. These new intriguing bndings are not yet completelyith results from other reports in which viruses were produced
understood and further investigations are needed to clarify ttve UNG2-depleted cells which expressed or did not express
mechanism. APOBEC3GHRriet et al., 2005; Jones et al., 2010; Guenzel et al.,
HIV-1 and other lentiviruses are unusual among retroviruseX)12, but also from reports showing that APOBEC3G-mediated
in their ability to infect resting or terminally differentiated cellsrestriction of HIV-1 was independent of UNG2<&iser and
While Vpr has been shown to facilitate the nuclear import oE merman, 2006; Langlois and Neuberger, 30Mbre recently,
viral DNA in non-dividing cells (see below), the virion incor-and in favor for a correlative positive impact of UNG2, it has
poration of UNG2 via Vpr may also contribute to the abilitybeen shown that the detrimental hypermutation of Hepatitis B
of HIV-1 to replicate in primary macrophages. This impliewvirus DNA induced by either APOBEC3G or interferon treat-
that UNG2 is a cellular factor that plays an important role irment was enhanced in a human hepatocyte cell lines when
the early steps of the HIV-1 replication cycle (i.e., viral DNAJING2 activity was inhibitedKitamura et al., 2013; Liang et al.,
synthesis). This observation is in agreement with a report sho2013. Additional investigations are thus required to further
ing that the misincorporation of uracil into minus strand viralunderstand this apparent contradiction regarding the role of
DNA affects the initiation of the plus strand DNA synthesi&JNG2 for the antiviral activity of APOBEC restriction fac-
in vitro (Klarmann et al., 2003 This observation suggests thators. However, it is tempting to speculate that the action of
UNG?2 is likely to be recruited into HIV-1 particles to subseboth viral proteins may infBuence the mutation rate during
quently minimize the detrimental accumulation of uracil intothe course of HIV-1 infection, and their balance may play a
the newly synthesized proviral DNA. While further works arkey role during disease progression and antiretroviral treat-
needed to explain the precise mechanism for how the UNG2ent susceptibility in infected individual$-¢urati et al., 2010,
catalytic activity may specibcally inBuence HIV-1 replication in01).
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Vpr AND THE VIRAL DNA NUCLEAR IMPORT structure consisting of 30 distinct nuclear pore proteins, named
Like other retroviruses, HIV-1 has the capacity to infect and intéwuicleoporins (Nups) Cronshaw et al., 2002Most of these Nups
grate its genomic DNA into dividing cells like T lymphocytes, butave bPlamentous structures containing FG or FXFG motif repeats
lentiviruses are also remarkable by their capacity to infect noamanating from both sides of the NPC and able to dock trans-
dividing cells, in contrast to onco-retroviruses which need the digort factors Rout and Aitchison, 20011t was initially reported
integration of the nuclear envelope to allow access of their genothat Vpr was able to recognize these FG motifs in Nups such
for integration in the host genomeQreber and Fassati, 2003 as p54 and p58 leading to the docking of Vpr to the nuclear
Indeed, HIV-1 can infect terminally-differentiated macrophagevembrane fouchier et al., 1998; Popov et al., 1p%nother
and produces new virions after integration of its DNA into thénteraction with the human CG1 (hCG1) nucleoporin has been
cell genome. The Vpr protein has been described as a potenti@scribed bye Rouzic et al. (2002However, Vpr associated with
enhancer of HIV-1 replication especially in macrophages wherdghg N-terminal region of hCG1 while the FG repeats of this Nup
it does not impact on virus replication in proliferating T cellswere located in the C-terminal part of the protein. This interac-
(Balliet et al., 1994; Connor et al., 1995; Eckstein et al.,)20dion results in Vpr accumulation at the nuclear envelope, which
In macrophages, the viral DNA needs to be transported inis believed to be involved in active nuclear import of the PIC in
the interphasic nucleus by an active mechanismd(cka et al., non-dividing cells, such as macrophagéscguot et al., 200.7
1999. After virus entry into the cell, the viral genome is reversé-hrough these interactions with components of NPC, Vpr may
transcribed in full length viral double-strand DNA which isbe responsible for the brst step of viral DNA import by targeting
associated with viral and host cell proteins into the so-called Pitbe PIC to the nuclear pore complex while other components of
Among the protein components of the PIC, four viral proteinghe PIC could trigger the next step of the nuclear translocation.
have been detected (e.g., the reverse-transcriptase and integhaseentioned above, it was also reported that Vpr can induce
enzymes, the matrix protein and VprjHginzinger et al., 1994; herniations and the dissociation of lamina and nuclear enve-
Jenkins et al., 1998; Eckstein et al., 2001; Le Rouzic et al., 2l@pe which provoke a blend of nuclear and cytoplasmic proteins
Schang, 2003; Suzuki et al., 209 (de Noronha et al., 2001 The exact mechanism inducing these

Despite the absence of a basic canonical or a M9-dependenrtmbrane perturbations is not understood, but some authors
nuclear localization signal (NLS) in the protein sequence, Vpypothesize that the interaction of Vpr with the NPC proteins
shows evident karyophilic propertieSgllay et al., 1996; Jenkinscould impact nuclear membrane stability. Consequently it may
et al., 1998; Depienne et al., 2)0Binally, Vpr seems to use aalso facilitate the entry of the PIC through a non-conventional
non-classical pathway to be transferred in the nucleus througiathway Gegura-Totten and Wilson, 2001
direct binding to importin- (Gallay et al., 1996; Nitahara-
Kasahara et al., 20)However, it was largely shown that VprQONCLUSlONS A'_\I_D FUTURE DIRECTIONS
is able to shuttle between the cytoplasm and the nuclear coki€ other HIV-1 auxiliary proteins, Vpris a small but multifunc-
partments and could play a potential role in transport of thdional protein which is potentlally able to interact with plenty
viral DNA (Jenkins et al., 2001a,b; Sherman et al., 2001, 2003o[gellular partners. During the Igst two decades, several groups
Rouzic et al., 2002By using a photobleaching strategy on livin oked for such partners but the importance of such_ interactions
cells, Le Rouzic and colleagues revealed that Vpr-GFP has sh(ifn needs to be better documented to support their real impact
tling properties (e Rouzic et al., 20)2This activity was linked ©N HIV-1 p.ropagatlon, immune anq annrgtrowral treatment eva-
to the distal LR region, a classical nuclear export signal (NES) r&fQn and disease progression. While major efforts have been made
ognized by the CRM1-dependent pathw&herman et al., 2001, during the last years to better d_e_bne the molecular mechanisms
2003. This NES could be involved in the release of Vpr back infy"d cellular targets of Vpr, additional works are needed for the
the cytoplasm, making it available for virion packaging througﬁomplete ur_1derstand|ng of its wide range of_act|V|t|es in key pro-
interaction with the Pr55Gag precursarenkins et al., 20013,  C€SSes dl_mng_ the early stepg of th_e viral life cycle _(|.e., reverse

The role of Vpr within the PIC has been studied in living cell§@nscription, intra-cytoplasmic routing and nuclear import of
through tracking of a GFP-tagged form of Vri¢Donald et al., the.V|raI DNA). However, precise characten;auon of Vpr inter-
2009. These authors evidenced a tight association between @#f&ions leading to the proteasomal degradation of some host cell
PIC and the cytoplasmic microtubules, targeting the viral DN;@ctors is certainly _the_mam challenge for a better understand-
toward the nucleus. The PIC moves along the cytoskeletal micfd ©f the Vpr contribution to the overall pathogenesis of HIV-1
tubule blaments using the dynein/dynactin complex as a motdection.
leading to its accumulation in the perinuclear region close to the
centrosome. So far, it is not known if Vpr plays an active role inEFEvf/{EzlgllgETSc I Sianaling in HIV-1 Infectic@en Virol. J7 57571, doi
the intracytoplasmic transport of the PIC; it may be only assodit 1%‘?’217'4(/1874)'3579201;%22'13%21 niectidipen Virol. 57, -dor
ated with the complex and play a role later for nuclear membrangco|a, m. A., Ohagen, A., and Gsttlinger, H. G. (2000). Isolation of human
anchoring and translocation of the viral DNA into the nucleus immunodebciency virus type 1 cores: retention of vpr in the absence of P6(gag).
(for review,Le Rouzic and Benichou, 2005 J. Virol.74, 6198D6202. doi: 10.1128/JV1.74.13.6198-6202.2000

The nuclear envelope contains two concentric membranfgces. B.'M.,qnd EIIis,R.J. (2007). Dementia_and neurocognitive disorders due to
with nuclear pore complexes (NPC) consisting of aqueous chazi o, "Setiar 1 . zimrermen, £ S Ao, O, Kim, B, Jacauot, G.
nels which allow for selective transport between the cytoplasmicet a1, (2006). HIV-1 Vpr-induced apoptosis is cell cycle dependent and requires
and nuclear compartments. The NPC corresponds to a 125 MDaBax but not ANTPL0S Patho@:e127. doi: 10.1371/journal.ppat.0020127
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