N. Bandyopadhyay and V. Dragalin, Implementation of an adaptive group sequential design in a bioequivalence study, Pharmaceutical Statistics, vol.96, issue.2, pp.115-137, 2007.
DOI : 10.1002/pst.252

C. Bazzoli, S. Retout, and F. Mentré, Design evaluation and optimisation in multiple response nonlinear mixed effect models: PFIM 3.0, Computer Methods and Programs in Biomedicine, vol.98, issue.1, pp.55-65, 2010.
DOI : 10.1016/j.cmpb.2009.09.012

URL : https://hal.archives-ouvertes.fr/inserm-00431457

C. Bazzoli, S. Retout, and F. Mentré, Fisher information matrix for nonlinear mixed effects multiple response models: Evaluation of the appropriateness of the first order linearization using a pharmacokinetic/pharmacodynamic model, Statistics in Medicine, vol.60, issue.14, pp.1940-56, 2009.
DOI : 10.1111/j.0006-341X.2004.00148.x

URL : https://hal.archives-ouvertes.fr/inserm-00371363

B. Bornkamp, F. Bretz, A. Dmitrienko, G. Enas, B. Gaydos et al., Innovative Approaches for Designing and Analyzing Adaptive Dose-Ranging Trials, Journal of Biopharmaceutical Statistics, vol.40, issue.6, pp.965-95, 2007.
DOI : 10.2307/2530666

A. Burstein, P. Gal, and A. Forrest, Evaluation of a sparse sampling strategy for determining vancomycin pharmacokinetics in preterm neonates: application of optimal sampling theory. The Annals of Pharmacotherapy, pp.980-983, 1997.

T. Chen, Optimal three-stage designs for phase II cancer clinical trials, Statistics in Medicine, vol.16, issue.23, pp.2701-2712, 1997.
DOI : 10.1002/(SICI)1097-0258(19971215)16:23<2701::AID-SIM704>3.0.CO;2-1

S. Chow and M. Chang, Adaptive design methods in clinical trials. Chapman and Hall/CRC ; Boca Raton, 2007.

G. Claeskens, L. Hjort, and N. , Model selection and model averaging, Cambridge Series in Statistical and Probabilistic Mathematics, 2008.

E. Comets, A. Lavenu, and M. Lavielle, SAEMIX, an R version of the SAEM algorithm, Population Approach Group in Europe, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00717539

M. Dodds, A. Hooker, and P. Vicini, Robust Population Pharmacokinetic Experiment Design, Journal of Pharmacokinetics and Pharmacodynamics, vol.99, issue.1, pp.33-64, 2005.
DOI : 10.1007/s10928-005-2102-z

V. Dragalin, Adaptive designs: terminology and classification, Drug Information Journal, vol.40, pp.425-460, 2006.

V. Dragalin, B. Bornkamp, F. Bretz, F. Miller, S. Padmanabhan et al., A Simulation Study to Compare New Adaptive Dose???Ranging Designs, Statistics in Biopharmaceutical Research, vol.2, issue.4, pp.487-512, 2010.
DOI : 10.1198/sbr.2010.09045

V. Dragalin, F. Hsuan, and S. Padmanabhan, Model, Journal of Biopharmaceutical Statistics, vol.35, issue.6, pp.1051-70, 2007.
DOI : 10.1080/10543400600860469

A. European-medicines, Guideline on the role of pharmacokinetics in the development of medicinal products in the paediatric population, 2006.

A. European-medicines, Reflection paper on methodological issues in confirmatory clinical trials planned with an adaptive design, 2009.

V. Fedorov and S. Leonov, Optimal design for nonlinear response models. Chapman & Hall, CRC Biostatistics Series, p.2014

V. Fedorov, Y. Wu, and R. Zhang, Optimal dose-finding designs with correlated continuous and discrete responses, Statistics in Medicine, vol.72, issue.3, pp.217-251, 2012.
DOI : 10.1002/sim.4388

D. Food and . Administration, Critical Path Opportunities List, 2006.

D. Food and . Administration, Guidance for Industry: adaptive design clinical trials for drugs and biologics, 2010.

L. Foo and S. Duffull, Adaptive Optimal Design for Bridging Studies with an Application to Population Pharmacokinetic Studies, Pharmaceutical Research, vol.34, issue.6, pp.1530-1573, 2012.
DOI : 10.1007/s11095-011-0659-3

L. Foo, J. Mcgree, J. Eccleston, and S. Duffull, Comparison of Robust Criteria for D-Optimal Designs, Journal of Biopharmaceutical Statistics, vol.253, issue.1, pp.1193-1205, 2012.
DOI : 10.1023/A:1025701327672

I. Gueorguieva, K. Ogungbenro, G. Graham, S. Glatt, and L. Aarons, A program for individual and population optimal design for univariate and multivariate response pharmacokinetic???pharmacodynamic models, Computer Methods and Programs in Biomedicine, vol.86, issue.1, pp.51-61, 2007.
DOI : 10.1016/j.cmpb.2007.01.004

Q. Liu, M. Proschan, and G. Pledger, A Unified Theory of Two-Stage Adaptive Designs, Journal of the American Statistical Association, vol.97, issue.460, pp.1034-1075, 2002.
DOI : 10.1198/016214502388618852

F. Mentré, M. Chenel, E. Comets, J. Grevel, A. Hooker et al., Current Use and Developments Needed for Optimal Design in Pharmacometrics: A Study Performed Among DDMoRe???s European Federation of Pharmaceutical Industries and Associations Members, CPT: Pharmacometrics & Systems Pharmacology, vol.2, issue.6, p.46, 2013.
DOI : 10.1007/s11095-011-0659-3

F. Mentré, C. Dubruc, and J. P. Thénot, Population pharmacokinetic analysis and optimization of the experimental design for Mizolastine solution in children, Journal of Pharmacokinetics and Pharmacodynamics, vol.28, issue.3, pp.299-319, 2001.
DOI : 10.1023/A:1011583210549

F. Mentré, A. Mallet, and D. Baccar, Optimal design in random-effects regression models, Biometrika, vol.84, issue.2, pp.429-442, 1997.
DOI : 10.1093/biomet/84.2.429

T. Mielke, Approximations of the Fisher information for the construction of efficient experimental designs in nonlinear mixed effects models, 2012.

T. Mielke and R. Schwabe, Some Considerations on the Fisher Information in Nonlinear Mixed Effects Models, Proceedings of the 9th international workshop in model-oriented design and analysis, 2010.
DOI : 10.1007/978-3-7908-2410-0_17

T. Nguyen, C. Bazzoli, and F. Mentré, Design evaluation and optimisation in crossover pharmacokinetic studies analysed by nonlinear mixed effects models, Statistics in Medicine, vol.30, issue.11-12, pp.1043-1058, 2012.
DOI : 10.1002/sim.4191

URL : https://hal.archives-ouvertes.fr/inserm-00629594

J. Nyberg, C. Bazzoli, K. Ogungbenro, A. Aliev, S. Leonov et al., Methods and software tools for design evaluation in population pharmacokinetics-pharmacodynamics
URL : https://hal.archives-ouvertes.fr/hal-00951896

L. Pronzato and A. Pazman, Design of experiments in nonlinear models, p.2013
DOI : 10.1007/978-1-4614-6363-4

URL : https://hal.archives-ouvertes.fr/hal-00879984

L. Pronzato and E. Walter, Robust experiment design via maximin optimization, Mathematical Biosciences, vol.89, issue.2, pp.161-76, 1988.
DOI : 10.1016/0025-5564(88)90097-1

S. Retout, E. Comets, A. Samson, and F. Mentré, Design in nonlinear mixed effects models: Optimization using the Fedorov???Wynn algorithm and power of the Wald test for binary covariates, Statistics in Medicine, vol.39, issue.28, pp.5162-5179, 2007.
DOI : 10.1002/sim.2910

URL : https://hal.archives-ouvertes.fr/hal-00263513

S. Retout, S. Duffull, and F. Mentré, Development and implementation of the population Fisher information matrix for the evaluation of population pharmacokinetic designs, Computer Methods and Programs in Biomedicine, vol.65, issue.2, pp.141-51, 2001.
DOI : 10.1016/S0169-2607(00)00117-6

S. Retout, F. Mentré, and R. Bruno, Fisher information matrix for non-linear mixed-effects models: evaluation and application for optimal design of enoxaparin population pharmacokinetics, Statistics in Medicine, vol.26, issue.6, pp.2623-2662, 2002.
DOI : 10.1002/sim.1041

L. Sheiner, B. Rosenberg, and K. Melmon, Modelling of individual pharmacokinetics for computeraided drug dosage, Computers and Biomedical Research, vol.5, pp.411-459, 1972.

L. Sheiner and J. Steimer, Pharmacokinetic/Pharmacodynamic Modeling in Drug Development, Annual Review of Pharmacology and Toxicology, vol.40, issue.1, pp.67-95, 2000.
DOI : 10.1146/annurev.pharmtox.40.1.67

M. Tod, V. Jullien, and G. Pons, Facilitation of Drug Evaluation in Children by??Population Methods and Modelling???, Clinical Pharmacokinetics, vol.116, issue.4, pp.231-274, 2008.
DOI : 10.2165/00003088-200847040-00002

S. Zamuner, D. Iorio, V. Nyberg, J. Gunn, R. Cunningham et al., Adaptive-Optimal Design in PET Occupancy Studies, Clinical Pharmacology & Therapeutics, vol.87, issue.5, pp.563-71, 2010.
DOI : 10.1111/j.2005.0906-7590.04112.x