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1 INTRODUCTION

In clinical pharmacokinetics (PK), the evolution of drug concentration versus time is

studied. PK profiles are described by mathematical models, and nonlinear mixed effects

models (NLMEM) (Sheiner et al., 1972 ; Sheiner and Steimer, 2000) are used to analyze

PK data obtained in group of patients or healthy volunteers. This is called the population

approach. PK studies in children are often more difficult to perform than those in adults.

The blood volume that can be taken in children is much more limited than in adult healthy

volunteers so that the number of sampling times is limited. For ethical reasons, PK studies

in children are conducted in patients who may potentially benefit from the treatment, and

not in healthy volunteers, as for adults. As, most of the time, only sparse data can be

obtained in children, NLMEM is an appropriate methodology for analyzing PK information

in pediatric trials both from a practical and ethical point of view (EMA, 2006 ; Mentré et

al., 2001 ; Tod et al., 2008).

The design of PK studies is important when the number of samples and subjects is limited,

as every sample must be informative, especially when clinical constraints are strong. Indeed,

the design has a large impact on the precision of population parameter estimates (Mentré et

al., 1997). A PK design for NLMEM consists in choosing the number of patients and for each

patient the elementary design. Elementary designs are composed of several sampling times

to be drawn for each individual. In the EMA guideline related to PK studies in the pediatric

population (EMA, 2006), simulations or theoretical optimal design approaches, based on

prior knowledge, are presented as tools to be considered for the selection of sampling times,

number of subjects and number of samples per subject. To avoid simulations, which are time

consuming, designs can be evaluated using the Fisher information matrix (MF ) and the op-

timization of its determinant, corresponding to the D-optimality criterion. The calculation

of MF for NLMEM was first developed by Mentré et al. (1997) and Retout et al. (2002) for

uniresponse NLMEM and then extended to multiresponse population PK/pharmacodynamic

(PD) models (Bazzoli et al., 2009 ; Gueorguieva et al., 2007 ; Retout et al., 2002) using a

first-order Taylor expansion of the population PK model around the random effect (Mentré

et al., 1997 ; Retout et al., 2001). Several approximations of MF can be used in the com-

munity of PKPD design, but it was suggested (Mielke and Schwabe, 2010 ; Mielke, 2012)

that the block diagonal expression might be more reliable than one with the full MF , when

an approach by linearization is performed. The calculation of the MF for NLMEM used in

population PK is implemented in several software packages, including PFIM developed in

R, dedicated to design evaluation and optimization (Bazzoli et al., 2010). PFIM evaluates

and optimizes population designs in NLMEM with single and multiple responses (Bazzoli et
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al., 2009). The expression of MF in NLMEM was also extended to evaluate and to optimize

designs in crossover trials (Nguyen et al., 2012) and is implemented into the version PFIM

3.2, available since 2010. To evaluate MF in NLMEM, prior information is needed such as

the model but also a priori values of the parameters. This is called a local design (Burstein

et al., 1997). Local design based on these a priori values can lead to a sub-optimal design

when the true population parameter values are different from the a priori ones. Alternatives

to local design are robust design, relying on a priori distribution of parameters (Dodds et

al., 2005 ; Foo et al., 2012 ; Pronzato and Walter, 1988), or adaptive design (Chow and

Chang, 2007).

Adaptive design is increasingly used for randomized clinical trials or for dose-ranging

studies (Dragalin et al., 2010 ; EMA, 2009 ; FDA, 2006 ; FDA, 2010). The working group

Pharmaceutical Research and Manufacturers of America (PhRMA, Dragalin, 2006) defined

an adaptive design as a design of experiment in which accumulated data during the trial

are used to possibly modify the aspects of the study, without compromising the validity and

integrity of the clinical trial (Gallo et al., 2006).

It was already shown that adaptive designs improve dose ranging during clinical drug

development (Bornkamp et al, 2007). Adaptive designs are now widely developed for ran-

domized clinical trials or dose-ranging studies, but are barely used in population PK/PD

(Foo and Duffull, 2012 ; Zamuner et al., 2010). However, according to a survey performed by

Mentré et al. (2013), adaptive design in population PK/PD is a priority for pharmaceutical

companies, graduating its importance with a median equal to 4 on a scale between 0 and 5.

Zamuner et al. (2010) showed that optimal adaptive design provided a more efficient design

for the study they conducted in imaging. Indeed, the optimal adaptive design allowed to

minimize the number of subjects needed for the study and to maximize information. Foo and

Duffull (2012) developed and evaluated a method allowing to conduct PK adaptive bridging

studies. Using simulation studies, the authors showed that D-optimal adaptive method ap-

plied to bridging studies was more efficient, since it provided better estimations, when the

PK profiles of the target and a priori populations differed.

An important point in adaptive design is the number of adaptations, that is cohorts of

patients. In a study concerning the dose-ranging optimal design, it was shown that two-

stage adaptive designs are more efficient than fully adaptive designs, i.e., when adaptation

is performed after each patient (Fedorov et al., 2012). In the framework of a clinical trial

in cancerology, Chen (1997) compared three-stage adaptive designs to two-stage adaptive

designs. Comparison showed that the benefit of a three-stage adaptive design compared to a

two-stage design is not as important as the gain of two-stage design versus one stage. They

also discussed that an adaptive design with four stages or more would not allow to improve
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the results. Furthermore, two-stage adaptive designs are easier to conduct in clinical trials

as only one modification is made.

The first objective of the present work was to introduce two-stage adaptive design in

NLMEM. In section 2, we present the model and the principle of the two-stage adaptive

design, and the development of MF associated to this design is described in Section 3. The

second objective was to evaluate, with a simulation approach, the impact of two-stage de-

signs on the precision of parameter estimation when the true PK parameters are different

from the a priori ones. We have performed this simulation for a population PK study in

paediatrics. And finally, we have investigated the influence of the sample size ratio between

the two stages of an adaptive design. Section 4 presents the simulation study and the results

are given in Section 5.
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2 Model and design

A NLMEM, or a population model, is defined as follows. The elementary design ξi of

individual i (i = 1, ..., N), is defined by ni sampling times and their allocation in time, that

is ξi = (ti1, ..., tini
). The vector of observations Yi for the ith individual is defined as

Yi = f(g(β, bi), ξi) + εi (1)

with

g(β, bi) = β + bi (2)

for a normal distribution of parameters (additive random effects), or

g(β, bi) = βexp(bi) (3)

for a lognormal distribution of parameters (exponential random effects). β represents the p-

vector of the fixed effects parameters and bi, the vector of the p random effects for individual

i. It is assumed that bi ∼ N(0,Ω) with Ω defined as a p× p diagonal matrix, for which, each

diagonal element ω2
r , r = 1, ..., p, represents the variance of the rth component of the vector

bi. The function f defines the nonlinear structural model. εi is the vector of residual error

and it is also supposed that εi ∼ N(0,Σi) with Σi a ni × ni-diagonal matrix such that:

Σi(β, bi, σinter, σslope, ξi) = diag(σinter + σslope × f(g(β, bi), ξi))
2. (4)

The parameters σinter and σslope are respectively the additive and proportional parts of the

error model. The case σslope = 0 corresponds to a homoscedastic error model, whereas the

case σinter = 0 corresponds to a constant coefficient of variation error model. The case where

the two parameters differ from zero is called a combined error model. Finally, condition-

nally on the value of bi, it is assumed that the errors εi are independently distributed. Let

λT = (ω2
1, ..., ω

2
p, σinter, σslope) be the vector of variance terms and let Ψ be the vector of the

population parameters to be estimated, so that ΨT = (βT , λT ).

A one-stage population design for NLMEM is composed of N individuals to whom an

elementary design ξi, i = 1, ..., N , is allocated. A population design is therefore described

by N elementary designs for a total number ntot of observations such as ntot =
N∑
i=1

ni and

Ξ = {ξ1, ..., ξN}. In the case where the elementary design ξ is the same for the N individuals,

the total number of observations is ntot = N × n.
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A two-stage population design is composed of 2 groups of N1 and N2 individuals (N1 +

N2 = N) with respectively designs Ξ1 and Ξ2 within each group. When the design is as-

sumed identical within each group, the population design can then be written as follows:

Ξ = {[ξ1, N1]; [ξ2, N2]}. In a two-stage adaptive design, Ξ1 is determined from a priori

parameters Ψ0 and Ξ2 is optimized for the parameters Ψ̂1 estimated with the data of the

first cohort. More precisely, at the first stage, from the model and a priori parameters Ψ0,

data are collected for N1 individuals according to a design Ξ1, optimized using the a priori

parameters. From data Y1, obtained with the first cohort, the population parameters Ψ̂1

are estimated. At the second stage, the design Ξ2 of the second cohort, composed of N2

individuals, is then optimized for the parameters Ψ̂1, estimated at the end of the first stage.

Data Y2 are then collected for the N2 individuals having the design Ξ2 and finally, data Y1

and Y2, obtained from N = N1 +N2 individuals included in each cohort, are simultaneously

analyzed to estimate parameters Ψ̂2.

Here, we use the D-optimality criterion to optimize designs which consists in maximizing

the determinant of the Fisher information matrix (det(MF )). We suppose that all individ-

uals have the same elementary design ξ for a same stage; that is ξ1 corresponds to Ξ1 and

ξ2 to Ξ2. The sizes of cohorts N1 and N2 are fixed, as well as the number of samples n1 and

n2 within each elementary design. Therefore, we only optimize with respect to the sampling

times in ξ1 and ξ2. Figure 1 represents a two-stage adaptive design.

3 Fisher information matrix

In the following, the index i for the individual is omitted for sake of simplicity. The

elementary Fisher information matrix MF (Ψ, ξ) for an individual with design ξ is given by

MF (Ψ, ξ) = E(−∂
2L(Ψ;Y )

∂Ψ∂ΨT
) (5)

where L(Ψ;Y ) is the log-likelihood of the vector of observations Y of that individual for the

population parameters Ψ. Because f is nonlinear, there is no analytical expression for the log-

likelihood and a first-order Taylor expansion (Mentré et al., 1997) of the model f(g(β, b), ξ),

around the expectation of b, that is to say around 0, is used. Using this linearization, the

statistical model can be written as:

Y ∼= f(g(β, 0), ξ) + (
∂fT (g(β, b), ξ)

∂b
)b=0b+ ε. (6)
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The approximated marginal expectation E and variance V of Y are given by:

E(Y ) ∼= E = f(g(β, 0), ξ) (7)

V ar(Y ) ∼= V = (
∂fT (g(β, b), ξ)

∂b
)b=0Ω(

∂f(g(β, b), ξ)

∂bT
)b=0 + Σ(β, 0, σinter, σslope, ξ) (8)

The log-likelihood L is approximated by:

−2L(Ψ;Y ) ∼= nln(2π) + ln(|V |) + (Y − E)TV −1(Y − E). (9)

For a linear mixed effects model, this tacitly assumes that the random variable Y is ap-

proximately Gaussian. Hence for NLMEM the approximation is better when the level of

non-linearity of the model is limited and/or when inter-individual variability is small.

The elementary MF depends on the approximated marginal expectation E and variance V

of the observations. Assuming that the derivative of V does or does not depend on the fixed

effects, the elementary MF is a full matrix or a block diagonal matrix. There is no clear

consensus on what is the best approximation, but here in our approach by linearization, we

assume the choice of the block diagonal expression (Mielke and Schwabe, 2010 ; Nyberg et

al., 2014). With that approximation, we have:

MF (Ψ, ξ) ∼=
1

2

A(E, V ) 0

0 B(E, V )

 (10)

where

(A(E, V ))ml = 2
∂fT

∂βm
V −1 ∂f

∂βl
(11)

with m and l = 1, ..., p and

(B(E, V ))ml = tr(
∂V

∂λm
V −1 ∂V

∂λl
V −1) (12)

with m and l = 1, ..., dim(λ).

In the case of only one group composed of N individuals, the population Fisher informa-

tion matrix for a population design Ξ is computed as:

MF (Ψ,Ξ) = N ×MF (Ψ, ξ). (13)
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This calculation of MF is implemented in PFIM (Bazzoli et al., 2010).

When neglecting the dependence implied by the adaptation in the representation of the

Fisher matrix, the two-stage design is performed as follows. For the two-stage adaptive de-

sign, we assume N1 individuals associated with a same design ξ1 at the first stage, and N2

individuals associated with a same design ξ2 at the second stage. For the first stage of a

two-stage adaptive design, the Fisher information matrix is expressed as follows:

MF (Ψ0, N1ξ) = N1MF (Ψ0, ξ). (14)

We define ξ1 as the design which maximizes the determinant of this matrix. Then for the

second stage, the expression of MF is:

MF (Ψ̂1, N1ξ1 +N2ξ) = N1MF (Ψ̂1, ξ1) +N2MF (Ψ̂1, ξ). (15)

For the second stage, ξ2 is the design which maximizes the determinant of this matrix, using

the parameters Ψ̂1 estimated at the first stage. This expression is implemented in version

4.0 of PFIM which will be soon available.

4 SIMULATION STUDY

4.1. Pharmacokinetic example

The simulation study mimicked a pediatric PK trial. The PK model is a two-compartment

model with first-order absorption, exponential random effects and proportional error model.

The observed concentration of a child at sampling time tj is modelled by:

f(θ, tj) = D(Ae−α.tj +Be−β.tj − (A+B)e−ka.tj) (16)

where θ = (ka, CL, V 1, Q, V 2) and

β = 1
2

(
Q
V 1

+ Q
V 2

+ CL
V 1
−
√(

Q
V 1

+ Q
V 2

+ CL
V 1

)2 − 4 Q
V 2

CL
V 1

)
,

α =
Q
V 2

CL
V 1

β
,

A =
ka

V 1

Q
V 2
− α

(ka− α)(β − α)
,

B =
ka

V 1

Q
V 2
− β

(ka− β)(α− β)
.
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In equation (16), D denotes the dose, ka the absorption rate constant, CL the clearance

of elimination of the drug, Q the inter-compartmental clearance from compartment 1 to

compartment 2, V 1 and V 2 the volumes respectively of the central compartment and of the

peripheral compartment. With the chosen parametrization, note that the parameters vary

independently of each other.

Here we assumed that the dose administered is equal to 0.1 mg. We defined two sets of

pharmacokinetic parameters: the a priori parameters Ψ0, guessed from adults, and the true

parameters Ψ∗ with which all simulations are performed. They are presented in Table 1. All

parameters have the same variance (ω2 = 0.3) and we consider the same proportional error

(σ = 0.2).

The optimal designs with one or two stages are obtained assuming a total number N = 60

children, having the same design ξ at a same stage composed of 5 sampling times among 15

possible sampling times: 0.083, 0.17, 0.25, 0.33, 0.5, 0.75, 1, 2, 3, 4, 5, 6, 8, 10, 12 hours af-

ter drug administration. Designs are optimized with PFIM (version 3.2), which allows us to

maximize the determinant of MF using statistical design within a finite set of sampling times

(Retout et al., 2007). Designs are then evaluated through the criterion given by det(MF )1/P ,

P being the total number of parameters in Ψ. We denote by ξ1 and ξ∗ the designs opti-

mized respectively with the parameters Ψ0 and Ψ∗, and by ξ2 the design optimized at the

second stage. Optimal designs obtained with the parameters Ψ0 and Ψ∗ are respectively

ξ1 = 0.083, 1, 2, 5, 12 hours after drug administration and ξ∗ = 0.083, 0.33, 0.75, 2, 12 after

drug administration. Figure 2 represents mean profiles obtained with the parameters Ψ0 and

Ψ∗, on which are added the times of ξ1 and ξ∗.

4.2. Simulation settings

We consider designs with a total number of N = 60 children. All simulated data are ob-

tained with the true parameters Ψ∗. We are interested in 2 one-stage designs (non adaptive

designs), that is the designs ξ1 (60-0), optimized with parameters Ψ0, and the optimal design

ξ∗ (0-60), optimized with the true parameters (Figure 2). In parallel, we are interested in 3

two-stage adaptive designs: ξ50−10 (50-10), ξ30−30 (30-30), ξ10−50 (10-50), varying the size of

each cohort N1 and N2: 50 and 10, 30 and 30, 10 and 50 children, at the first stage and at

the second stage, respectively.

For each of the designs mentioned above, we simulate 100 adaptive clinical trials with R.

The simulation study is performed as follows. From the same design ξ1, we simulate 10 data

sets (Y 1
1 , ..., Y 10

1 ) for the first cohort composed of N1 children with the parameters Ψ∗. From
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these 10 data sets, 10 vectors of parameters Ψ̂1 are estimated using saemix (http://cran.r-

project.org/web/packages/saemix/index.html) in R. The saemix package implements the

Stochastic Approximation Expectation Maximisation (SAEM) algorithm (Comets et al.,

2011), which computes the maximum likelihood estimator of the population parameters in

NLMEM, without any approximation of the model. Then, for each vector of parameters Ψ̂1,

a design ξ2 is optimized with the combined Fisher information matrix described by equation

(15). 10 simulations are then performed for each of the 10 designs ξ2 for the N2 children of

the second cohort. Thus, we obtain 100 data sets (Y 1,1
2 , ..., Y 10,10

2 ), and we combine data Y1

and Y2 from which we estimate 100 vectors of parameters Ψ̂2 using saemix. The simulation

scheme of adaptive clinical trials is described in Figure 3.

4.3. Evaluation methods

Our aims are to evaluate the impact of two-stage adaptive designs on the precision of

parameter estimation on the one hand, and to investigate the influence of the sample size

ratio of each stage on the other hand. To evaluate a design, we compute the relative root

mean square errors (RRMSE) for the 100 estimated Ψ̂2 of the 2 one-stage designs, ξ1 and

ξ∗, and of the 3 adaptive two-stage designs, ξ50−10, ξ30−30, and ξ10−50, as follows:

RRMSE(Ψp) =

√
E((Ψ̂2p −Ψ∗

p)
2)× 100

Ψ∗
p

(17)

with Ψ̂2p the estimated p component and Ψ∗
p the true value. We also calculate the standard-

ized RRMSE for each parameter and each design as the RRMSE divided by the RRMSE

obtained with ξ∗, ξ∗ being the reference because it is the design optimized with the true

parameters. For each design, mean standardized RRMSE is then computed.

We are also interested in the criterion predicted by PFIM, associated with the evaluation

of one-stage designs. The criterion evaluates the amount of information and is computed

with the true parameters Ψ∗. For the two-stage designs, we compute a mean criterion, de-

fined as the mean of the 10 criterion values obtained for each of the 10 two-stage designs

computed with Ψ∗. Indeed, the design ξ1 is identical for all data sets at the first stage but

we have 10 designs ξ2 at the second stage, optimized according to the 10 data sets at the

first stage.

It is of interest to note that we could have optimized the designs with respect to the

RRMSE-criterion. However this is more time consuming as there is no expression of the

expected RRMSE and hence the criterion has to be evaluated by simulation. This is why
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most approaches use the D-optimality criterion, which indeed assumes no bias and uses an

approximation for the expected MF .

In section 5.1 we present the comparison of the RRMSE and of the criteria for the one-

stage (non adaptive) designs, and for the two-stage design ξ30−30, with the same number of

children at the first and second stages. Then, we focus in Section 5.2 on the comparison of

RRMSE and criteria of two-stage adaptive designs, with different sizes of cohort for the first

and second stages (N1 and N2 respectively equal to 50 and 10, 30 and 30, 10 and 50).

5 RESULTS

5.1. Precision of parameter estimation

For the one-stage designs, the RRMSE and standardized RRMSE of each parameter,

computed from the 100 vectors of estimated parameters Ψ̂2 are presented in Table 2. As

expected, we can see that the RRMSE are lower for the design ξ∗, which corresponds to

the optimal design, and are high for the design ξ1, optimized from a priori parameters Ψ0.

These results are summarized by the mean standardized RRMSE, which is equal to 1.76 for

ξ1, that is almost the double of the one for the optimal design ξ∗ which equals to 1 (reference

value). Regarding the criterion for ξ1, computed with Ψ∗, its value is 26.9, much lower than

the criterion value for ξ∗, equal to 84.7. It underlines the low information obtained with ξ1.

For the two-stage design with N1 = N2 = 30, the 10 optimal designs ξ2 obtained for the

10 vectors of parameters Ψ̂1 are displayed in Figure 4 (notice that only 6 different designs are

obtained). These designs ξ2 are closer to ξ∗ than to ξ1 and two of them coincide with ξ∗. The

RRMSE for this two-stage design ξ30−30, computed from the 100 vectors of parameters Ψ̂2

are close to the RRMSE obtained for the optimal design ξ∗ (see Table 2). For some param-

eters (for instance fixed effects CL and V2) the optimal design ξ∗ provides slightly greater

RRMSE than the adaptive design, whereas it provides better RRMSE for other parameters

and a better overall mean RRMSE. This is because a global optimization criterion on all

parameters was used and also because the adaptive design gives very good results (mean

standardized RRMSE of 1.06). Indeed, the mean standardized RRMSE of ξ30−30 is equal to

1.06 and is therefore close to the value obtained for ξ∗ (equal to 1). The mean (respectively

min and max) criterion values for the 10 two-stage design ξ30−30, evaluated in Ψ∗, are 72.5

(respectively 69.1 and 74.6), which is close to the one for the optimal design. We can see

that two-stage design has allowed a correction of the unsatisfactory results obtained for the

non adaptive design ξ1.

11



5.2. Impact of size of each cohort

For the 3 two-stage designs with various number of children (ξ50−10, ξ30−30 and ξ50−10),

the RRMSE and standardized RRMSE, computed from the 100 vectors of parameters Ψ̂2,

are presented in Table 3. The RRMSE are slightly worse for the design ξ10−50 when the num-

ber of children for the first cohort is low. Indeed, its associated mean standardized RRMSE

is equal to 1.15 whereas the mean standardized RRMSE for the two-stage adaptive designs

ξ30−30 and ξ50−10 are closer to the one for the optimal design and are respectively equal to

1.06 and 1.07. Nevertheless, this trend is not confirmed by the mean (respectively min and

max) criterion values since the later for the design ξ10−50 equals 72.2 (respectively, 45.2 and

82.0) and is in the same range as the mean criterion obtained for the design ξ30−30. The

mean (respectively min and max) criterion values obtained for the design ξ50−10 are 59.0 (re-

spectively 56.5 and 60.9). The difference between the minimum criterion and the maximum

criterion for the design ξ10−50 is important, contrary to the design ξ30−30. The minimum and

maximum criterion values for the designs ξ30−30 and ξ50−10 are rather close, indicating that

30 subjects in the first cohort are enough to significantly reduce the variability of the design

used at the second stage. Other investigations would be needed to confirm or infirm this

observation.
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6 DISCUSSION

We have proposed an approach for two-stage design for NLMEM (with an implementa-

tion that will be available soon in the next version PFIM 4.0). In the present work, the

calculation of MF was performed using a first-order linearization of the model by the Taylor

expansion. The derivative of the variance of observations according to the fixed effects was

assumed to be zero, which corresponds to a block diagonal expression for MF . There is no

clear consensus on what is the best approximation but it was suggested (Mielke and Schwabe,

2010 ; Mielke, 2012) that the block diagonal expression might be more reliable than one with

the full MF . In the simulation study on two examples (Nyberg et al., 2014), when using first

order approximation, the block matrix gave better results. On the other hand, we did not

take into account the adaptation in the optimization of the MF of the first step, nor that

estimation was performed after first step for definition of MF of the second step. Hence, the

dependence implied by the adaptation was neglected (Pronzato and Pazman, 2013; Fedorov

and Leonov, 2013).

Using simulations, we have studied the impact of two-stage designs on the precision of

parameter estimation for a population PK study in children. Saemix in R was used for

parameter estimation and evaluation and optimization were performed with PFIM in R. We

compared the results obtained for non adaptive designs, that is with the total number of

children N = 60 having the design ξ1, optimized with the wrong parameters, and with the

total number of children having the design ξ∗, optimal for the true parameters, to the results

obtained for the two-stage adaptive design, with the same number of children at each of the

two stages (N1 = N2 = 30). Results showed that the the non adaptive design ξ1 provides

poor precisions of parameter estimates. The adaptive two-stage design allows to compensate

these poor results and yields performance close to those obtained for ξ∗, optimized with the

true parameters.

Then, we investigated the influence of the ratio of sample size of each stage. For that,

we studied two-stage designs with a number of children for each stage equal to 50/10, 30/30

or 10/50, respectively. The RRMSE were sometimes less satisfactory for the third design

whose the first cohort is small. The results obtained for two-stage adaptive designs were

generally satisfactory for each of the three ratios considered and close to the ones obtained

for the design ξ∗.

Other studies would be needed and it would also be important to increase the number of

replications in the simulation study which is rather low. Indeed, we estimated 100 vectors

of parameters at the end of the second stage but only 10 at the end of the first stage. The

reason why we have limited the number of replications is the absence of automatic connec-
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tion between saemix and PFIM, although both are written in R. Consequently, a manual

intervention at the end of the first stage is needed to incorporate into PFIM the vectors of

parameters Ψ̂1 estimated with saemix and which are needed for the optimization of designs

ξ2. One perspective of this work would be to create an automatic connection to allow an

important number of replications and for the use of this approach in clinical trials.

One limitation of this work was the assumptions made to conduct this simulation study.

Indeed, we chose to fix the size of each cohort. Moreover, we imposed to have the same

elementary design for all children in each cohort with a fixed number of sampling times.

Although these choices represent constraints usually needed in clinical trial, other scenario

should be studied. Also, further simulation studies are needed to set the balance between

size of first and second cohorts and with other examples. One theoretical study could also be

performed to determine the balance between the sizes of first and second cohorts in NLMEM,

as already done by Pronzato and Pazman (2013) for generalized nonlinear models.

In this work, we have assumed that the model was known and correct. Indeed, the same

a priori model at the beginning of the simulation study (for the first stage) was used for the

second stage. No sensitivity analysis with respect to model misspecification was performed

in the present work. Another step in adaptive design would be to use model averaging ap-

proaches (Claeskens and Lid Hjort, 2008).

In conclusion, local design, usually conducted for PK studies in children, relies on several

strong hypotheses. Indeed, optimal design in NLMEM depends on the PK model and its pa-

rameters. Besides the structure, an a priori value should be given for each parameter of the

model. We showed that the adaptive two-stage design is a promising approach for pediatric

PK studies, relatively easy to conduct in clinical trials as there is only one interim analysis.

In the example considered, two-stage adaptive designs provided satisfactory parameter esti-

mates, close to the ones obtained for the optimal design with the true parameters ans thus

allowed a correction of the poor results obtained for the non adaptive design optimized with

the wrong a priori parameters. In conclusion, although adaptive designs are still barely used

in population PK, results are promising and should stimulate the conduction of PK studies

with this approach and help convince pharmaceutical companies of its interest (Mentré et

al., 2013).
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Table 1: Population pharmacokinetic parameter values

Parameters Ψ0 Ψ∗

ka (h−1) 3.0 14

CL (L.h−1) 1.5 1.0

V1 (L) 2.0 1.0

Q (L.h−1) 1.0 2.0

V2 (L) 1.5 2.0
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Table 2: RRMSE computed for each parameter from the 100 vectors of parameters Ψ̂2 for
each studied design

RRMSE % (standardized RRMSE)

Parameters Values ξ1 (60-0) ξ30−30 (30-30) ξ∗ (0-60)

ka (h−1) 14 160 (7.05) 27.3 (1.20) 22.7

CL (L.h−1) 1 7.17 (1.07) 5.77 (0.857) 6.73

V1 (L) 1 25.2 (1.65) 23.7 (1.55) 15.3

Q (L.h−1) 2 27.1 (1.67) 18.8 (1.16) 16.2

V2 (L) 2 11.4 (1.00) 9.73 (0.854) 11.4

ω2
ka 0.3 100 (1.21) 90.4 (1.10) 82.4

ω2
CL 0.3 17.0 (0.950) 18.3 (1.02) 17.9

ω2
V 1 0.3 48.0 (1.33) 38.3 (1.06) 36.0

ω2
Q 0.3 89.9 (1.50) 71.5 (1.19) 59.9

ω2
V 2 0.3 36.4 (1.17) 26.6 (0.853 ) 31.2

σslope 0.2 10.4 (0.765) 10.8 (0.794) 13.6

Mean standardized
1.76 1.06 1.00

RRMSE
a RRMSE in bold are RRMSE greater than 30% for the fixed effects

and greater than 50% for the random effects.
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Table 3: RRMSE computed for each parameter from the 100 vectors of parameters Ψ̂2 for
each studied design

RRMSE % (standardized RRMSE)

Parameters Values ξ10−50 ξ30−30 ξ50−10

ka (h−1) 14 30.3 (1.33) 27.3 (1.20) 32.8 (1.44)

CL (L.h−1) 1 7.07 (1.05) 5.77 (0.857) 4.88 (0.725)

V1 (L) 1 19.3 (1.26) 23.7 (1.55) 21.1 (1.38)

Q (L.h−1) 2 21.2 (1.31) 18.8 (1.16) 19.2 (1.19 )

V2 (L) 2 12.3 (1.08) 9.73 (0.854) 11.4 (1.00)

ω2
ka 0.3 86.3 (1.05) 90.4 (1.10) 82.6 (1.00)

ω2
CL 0.3 30.6 (1.71) 18.3 (1.02) 21.4 (1.20)

ω2
V 1 0.3 23.5 (0.653) 38.3 (1.06) 37.1 (1.03)

ω2
Q 0.3 78.2 (1.31) 71.5 (1.19) 68.0 (1.14)

ω2
V 2 0.3 34.1 (1.09) 26.6 (0.853 ) 34.3 (1.10)

σslope 0.2 11.0 (0.809) 10.8 (0.794) 8.14 (0.599)

Mean standardized
1.15 1.06 1.07

RRMSE
a RRMSE in bold are RRMSE greater than 30% for the fixed effects

and greater than 50% for the random effects.
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Figure 1: Schematic representation of a two-stage adaptive design.
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Figure 2: Mean PK profiles in semi-log scale for the 2 sets of parameters and associated
optimal design with 5 samples.

24



Figure 3: Simulation plan of 100 two-stage adaptive clinical trials.
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Figure 4: The 10 second-stage designs ξ2 optimized from the 10 estimated Ψ̂1.
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