T. Sorlie, R. Tibshirani, J. Parker, T. Hastie, J. Marron et al., Repeated observation of breast tumor subtypes in independent gene expression data sets, Proc Natl Acad Sci USA2003, pp.1008418-8423
DOI : 10.1073/pnas.0932692100

C. Perou, T. Sorlie, M. Eisen, M. Van-de-rijn, S. Jeffrey et al., Molecular portraits of human breast tumours, Nature, issue.6797, pp.406747-752, 2000.

T. Sorlie, C. Perou, R. Tibshirani, T. Aas, S. Geisler et al., Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications, Proceedings of the National Academy of Sciences, vol.98, issue.19, pp.9810869-10874, 2001.
DOI : 10.1073/pnas.191367098

A. Prat, J. Parker, O. Karginova, C. Fan, C. Livasy et al., Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer, Breast Cancer Research, vol.15, issue.1, p.68, 2010.
DOI : 10.1038/nm0809-842

A. Prat and C. Perou, Mammary development meets cancer genomics, Nature Medicine, vol.32, issue.8, pp.842-844, 2009.
DOI : 10.1038/nm0809-842

E. Lim, F. Vaillant, D. Wu, N. Forrest, B. Pal et al., Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers, Nature Medicine, vol.5, issue.8, pp.15907-913, 2009.
DOI : 10.1038/nm.2000

G. Molyneux, G. Regan, and M. Smalley, Common Molecular Mechanisms of Mammary Gland Development and Breast Cancer, Cellular and Molecular Life Sciences, vol.64, issue.24, pp.3248-3260, 2007.
DOI : 10.1007/s00018-007-7391-5

T. Proia, P. Keller, P. Gupta, I. Klebba, A. Jones et al., Genetic Predisposition Directs Breast Cancer Phenotype by Dictating Progenitor Cell Fate, Cell Stem Cell, vol.8, issue.2, pp.149-163, 2011.
DOI : 10.1016/j.stem.2010.12.007

URL : http://doi.org/10.1016/j.stem.2010.12.007

P. Keller, A. Lin, L. Arendt, I. Klebba, A. Jones et al., Mapping the cellular and molecular heterogeneity of normal and malignant breast tissues and cultured cell lines, Breast Cancer Research, vol.9, issue.5, p.87, 2010.
DOI : 10.1038/ncb1530

Z. Jiang, T. Deng, R. Jones, H. Li, J. Herschkowitz et al., Rbdeletion in mouse mammary progenitors induces luminal-B or basal-like/EMT tumor subtypes depending on p53 status, J Clin Invest, vol.9, pp.3296-3309, 2010.

A. Morel, G. Hinkal, C. Thomas, F. Fauvet, S. Courtois-cox et al., EMT inducers catalyz emalignant transformation of mammary epithelial cells and drive tumorigenesis towards claudin-low tumors in transgenic mice, PLoS Genet, vol.2012, issue.85, p.1002723

J. Thiery, H. Acloque, R. Huang, and M. Nieto, Epithelial-Mesenchymal Transitions in Development and Disease, Cell, vol.139, issue.5, pp.871-890, 2009.
DOI : 10.1016/j.cell.2009.11.007

S. Ansieau, EMT in breast cancer stem cell generation, Cancer Letters, vol.338, issue.1, pp.63-68
DOI : 10.1016/j.canlet.2012.05.014

M. Al-hajj, M. Wicha, A. Benito-hernandez, S. Morrison, and M. Clarke, Prospective identification of tumorigenic breast cancer cells, Proceedings of the National Academy of Sciences, vol.100, issue.7, pp.3983-3988, 2003.
DOI : 10.1073/pnas.0530291100

G. Honeth, P. Bendahl, M. Ringnér, L. Saal, S. Gruvberger-saal et al., The CD44+/CD24-phenotype is enriched in basal-like breast tumors, Breast Cancer Research, vol.122, issue.3, p.110, 2008.
DOI : 10.1002/ijc.23103

M. Meyer, J. Fleming, A. Lin, S. Hussnain, E. Ginsburg et al., CD44posCD49fhiCD133/2hi Defines Xenograft-Initiating Cells in Estrogen Receptor-Negative Breast Cancer, Cancer Research, vol.70, issue.11, pp.4624-4633, 2010.
DOI : 10.1158/0008-5472.CAN-09-3619

A. Raouf, Y. Zhao, K. To, J. Stingl, A. Delaney et al., Transcriptome Analysis of the Normal Human Mammary Cell Commitment and Differentiation Process, Cell Stem Cell, vol.3, issue.1, pp.109-118, 2008.
DOI : 10.1016/j.stem.2008.05.018

N. Bloushtain-qimron, J. Yao, E. Snyder, M. Shipitsin, L. Campbell et al., Cell typespecific DNA methylation patterns in the human breast, Proc Natl Acad Sci, issue.37, pp.10514076-14081, 2008.

D. Sarrio, C. Franklin, A. Mackay, J. Reis-filho, and C. Isacke, Epithelial and Mesenchymal Subpopulations Within Normal Basal Breast Cell Lines Exhibit Distinct Stem Cell/Progenitor Properties, STEM CELLS, vol.8, issue.suppl 3, pp.292-303
DOI : 10.1002/stem.791

C. Ginestier, M. Hur, E. Charafe-jauffret, F. Monville, J. Dutcher et al., ALDH1 Is a Marker of Normal and Malignant Human Mammary Stem Cells and a Predictor of Poor Clinical Outcome, Cell Stem Cell, vol.1, issue.5, pp.555-567, 2007.
DOI : 10.1016/j.stem.2007.08.014

URL : https://hal.archives-ouvertes.fr/hal-01431968

D. Ross and C. Perou, A Comparison of Gene Expression Signatures from Breast Tumors and Breast Tissue Derived Cell Lines, Disease Markers, vol.17, issue.2, pp.99-109, 2001.
DOI : 10.1155/2001/850531

C. Hirschmann-jax, A. Foster, G. Wulf, J. Nuchtern, T. Jax et al., A distinct "side population" of cells with high drug efflux capacity in human tumor cells, Proceedings of the National Academy of Sciences, vol.101, issue.39, pp.14228-14233, 2004.
DOI : 10.1073/pnas.0400067101

A. Minn, G. Gupta, D. Padua, P. Bos, D. Nguyen et al., Lung metastasis genes couple breast tumor size and metastatic spread, Proceedings of the National Academy of Sciences, vol.104, issue.16, pp.1046740-6745, 2007.
DOI : 10.1073/pnas.0701138104

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1871856

S. Zhou, J. Schuetz, K. Bunting, A. Colapietro, J. Sampath et al., The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype, Nature Medicine, vol.7, issue.9, pp.1028-1034, 2001.
DOI : 10.1038/nm0901-1028

R. Summer, D. Kotton, X. Sun, B. Ma, K. Fitzsimmons et al., Side population cells and Bcrp1 expression in lung, American Journal of Physiology - Lung Cellular and Molecular Physiology, vol.285, issue.1, pp.97-104, 2003.
DOI : 10.1152/ajplung.00009.2003

K. Shimano, M. Satake, A. Okaya, J. Kitanaka, N. Kitanaka et al., Hepatic Oval Cells Have the Side Population Phenotype Defined by Expression of ATP-Binding Cassette Transporter ABCG2/BCRP1, The American Journal of Pathology, vol.163, issue.1, pp.3-9, 2003.
DOI : 10.1016/S0002-9440(10)63624-3

J. Cai, A. Cheng, Y. Luo, C. Lu, M. Mattson et al., Membrane properties of rat embryonic multipotent neural stem cells, Journal of Neurochemistry, vol.7, issue.1, pp.212-226, 2004.
DOI : 10.1046/j.1471-4159.2003.02184.x

E. Charafe-jauffret, C. Ginestier, and D. Birnbaum, Breast cancer stem cells: tools and models to rely on, BMC Cancer, vol.456, issue.144, p.202, 2009.
DOI : 10.1038/nature07567

URL : https://hal.archives-ouvertes.fr/hal-01431957

H. Clayton, I. Titley, and M. Vivanco, Growth and differentiation of progenitor/stem cells derived from the human mammary gland, Experimental Cell Research, vol.297, issue.2, pp.444-460, 2004.
DOI : 10.1016/j.yexcr.2004.03.029

J. Stingl, Detection and analysis of mammary gland stem cells, The Journal of Pathology, vol.100, issue.2, pp.229-241, 2009.
DOI : 10.1002/path.2457

M. Wright, A. Calcagno, C. Salcido, M. Carlson, S. Ambudkar et al., Brca1 breast tumors contain distinct CD44+/CD24- and CD133+ cells with cancer stem cell characteristics, Breast Cancer Research, vol.10, issue.1, p.10, 2008.
DOI : 10.1186/bcr1855

W. Hwang-verslues, W. Kuo, P. Chang, C. Pan, H. Wang et al., Multiple Lineages of Human Breast Cancer Stem/Progenitor Cells Identified by Profiling with Stem Cell Markers, PLoS ONE, vol.4, issue.12, p.8377, 2009.
DOI : 10.1371/journal.pone.0008377.s006

G. Dontu, W. Abdallah, J. Foley, K. Jackson, M. Clarke et al., In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells, Genes & Development, vol.17, issue.10, pp.171253-1270, 2003.
DOI : 10.1101/gad.1061803

L. Patrawala, T. Calhoun, R. Schneider-broussard, J. Zhou, K. Claypool et al., Side Population Is Enriched in Tumorigenic, Stem-Like Cancer Cells, whereas ABCG2+ and ABCG2- Cancer Cells Are Similarly Tumorigenic, Cancer Research, vol.65, issue.14, pp.656207-6219, 2005.
DOI : 10.1158/0008-5472.CAN-05-0592

B. Boman, M. Wicha, J. Fields, and O. Runquist, Symmetric Division of Cancer Stem Cells ??? a Key Mechanism in Tumor Growth that should be Targeted in Future Therapeutic Approaches, Clinical Pharmacology & Therapeutics, vol.147, issue.6, pp.81893-898, 2007.
DOI : 10.1038/sj.clpt.6100202

S. Morrison and J. Kimble, Asymmetric and symmetric stem-cell divisions in development and cancer, Nature, vol.125, issue.7097, pp.1068-1074, 2006.
DOI : 10.1038/nature04956

Z. Erdei, B. Sarkadi, A. Brózik, K. Szebényi, G. Várady et al., Dynamic ABCG2 expression in human embryonic stem cells provides the basis for stress response, European Biophysics Journal, vol.1192, issue.2-3, pp.2-3169
DOI : 10.1007/s00249-012-0838-0

C. Ozvegy-laczka, G. Varady, G. Koblos, O. Ujhelly, J. Cervenak et al., Functiondependent conformational changes of the ABCG2 multidrug transporter modify its interaction with a monoclonal antibody on the cell surface, J Biol Chem, issue.6, pp.2804219-4227, 2005.

G. Lindeman and J. Visvader, Insights into the cell of origin in breast cancer and breast cancer stem cells, Asia-Pacific Journal of Clinical Oncology, vol.100, issue.2, pp.89-97, 2010.
DOI : 10.1111/j.1743-7563.2010.01279.x

C. Perou, Molecular Stratification of Triple-Negative Breast Cancers, The Oncologist, vol.16, issue.Supplement 1, pp.61-70, 2011.
DOI : 10.1634/theoncologist.2011-S1-61

H. Nishida, H. Yamazaki, T. Yamada, S. Iwata, N. Dang et al., CD9 correlates with cancer stem cell potentials in human B-acute lymphoblastic leukemia cells, Biochemical and Biophysical Research Communications, vol.382, issue.1, pp.57-62, 2009.
DOI : 10.1016/j.bbrc.2009.02.123

K. Iwaya, H. Ogawa, M. Izumi, M. Kuroda, and K. Mukai, Stromal expression of CD10 in invasive breast carcinoma: a new predictor of clinical outcome, Virchows Archiv, vol.440, issue.6, pp.589-593, 2002.
DOI : 10.1007/s00428-002-0639-4

B. Pro and N. Dang, CD26/dipeptidyl peptidase IV and its role in cancer, Histol Histopathol, vol.19, issue.4, pp.1345-1351, 2004.

P. Manna and W. Frazier, CD47 Mediates Killing of Breast Tumor Cells via Gi-Dependent Inhibition of Protein Kinase A, Cancer Research, vol.64, issue.3, pp.1026-1036, 2004.
DOI : 10.1158/0008-5472.CAN-03-1708

M. Cariati, A. Naderi, J. Brown, M. Smalley, S. Pinder et al., Alpha-6 integrin is necessary for the tumourigenicity of a stem cell-like subpopulation within the MCF7 breast cancer cell line, International Journal of Cancer, vol.65, issue.2
DOI : 10.1002/ijc.23103

C. Rosette, R. Roth, P. Oeth, A. Braun, S. Kammerer et al., Role of ICAM1 in invasion of human breast cancer cells, Carcinogenesis, vol.26, issue.5, pp.943-950, 2005.
DOI : 10.1093/carcin/bgi070

J. Ikeda, E. Morii, Y. Liu, Y. Qiu, N. Nakamichi et al., Prognostic Significance of CD55 Expression in Breast Cancer, Clinical Cancer Research, vol.14, issue.15, pp.144780-4786, 2008.
DOI : 10.1158/1078-0432.CCR-07-1844

A. Babiker, B. Nilsson, G. Ronquist, L. Carlsson, and K. Ekdahl, Transfer of functional prostasomal CD59 of metastatic prostatic cancer cell origin protects cells against complement attack, The Prostate, vol.23, issue.2, pp.105-114, 2005.
DOI : 10.1002/pros.20102

A. Lasa, E. Serrano, M. Carricondo, M. Carnicer, S. Brunet et al., High expression of CEACAM6 and CEACAM8 mRNA in acute lymphoblastic leukemias, Annals of Hematology, vol.63, issue.21, pp.205-211, 2008.
DOI : 10.1007/s00277-007-0388-1

M. Yáñez-mó, O. Barreiro, M. Gordon-alonso, M. Sala-valdés, and F. Sánchez-madrid, Tetraspanin-enriched microdomains: a functional unit in cell plasma membranes, Trends in Cell Biology, vol.19, issue.9, pp.434-446, 2009.
DOI : 10.1016/j.tcb.2009.06.004

H. Yamazaki, H. Nishida, S. Iwata, N. Dang, and C. Morimoto, CD90 and CD110 correlate with cancer stem cell potentials in human T-acute lymphoblastic leukemia cells, Biochemical and Biophysical Research Communications, vol.383, issue.2, pp.172-177, 2009.
DOI : 10.1016/j.bbrc.2009.03.127

L. Henry, D. Johnson, D. Sarrió, S. Lee, P. Quinlan et al., Endoglin expression in breast tumor cells suppresses invasion and metastasis and correlates with improved clinical outcome, Oncogene, vol.267, issue.9, pp.1046-1058, 2011.
DOI : 10.1038/cr.2008.328

R. Sadej, H. Romanska, G. Baldwin, K. Gkirtzimanaki, V. Novitskaya et al., CD151 Regulates Tumorigenesis by Modulating the Communication between Tumor Cells and Endothelium, Molecular Cancer Research, vol.7, issue.6, pp.151787-798, 2009.
DOI : 10.1158/1541-7786.MCR-08-0574

A. Havens, Y. Jung, Y. Sun, J. Wang, R. Shah et al., The role of sialomucin CD164 (MGC-24v or endolyn) in prostate cancer metastasis, BMC Cancer, vol.21, issue.2, p.195, 2006.
DOI : 10.1128/MCB.21.22.7696-7706.2001

B. Seon, S. Negoro, M. Barcos, C. Tebbi, D. Chervinsky et al., Monoclonal antibody SN2 defining a human T cell leukemia-associated cell surface glycoprotein, J Immunol, vol.132, issue.4, pp.2089-2095, 1984.

V. Kulasingam, Y. Zheng, A. Soosaipillai, A. Leon, M. Gion et al., Activated leukocyte cell adhesion molecule: A novel biomarker for breast cancer, International Journal of Cancer, vol.112, issue.1, pp.9-14, 2009.
DOI : 10.1002/ijc.24292

A. Krohn, Y. Song, F. Muehlberg, L. Droll, C. Beckmann et al., CXCR4 receptor positive spheroid forming cells are responsible for tumor invasion in vitro, Cancer Letters, vol.280, issue.1, pp.65-71, 2009.
DOI : 10.1016/j.canlet.2009.02.005

B. Kawasaki, T. Mistree, E. Hurt, M. Kalathur, and W. Farrar, Co-expression of the toleragenic glycoprotein, CD200, with markers for cancer stem cells, Biochemical and Biophysical Research Communications, vol.364, issue.4, pp.778-782, 2007.
DOI : 10.1016/j.bbrc.2007.10.067

C. Prasad, G. Rath, S. Mathur, D. Bhatnagar, R. Parshad et al., Expression analysis of E-cadherin, Slug and GSK3?? in invasive ductal carcinoma of breast, BMC Cancer, vol.69, issue.Suppl, p.325, 2009.
DOI : 10.1007/978-1-4757-3656-4

Z. Ni, Z. Bikadi, M. Rosenberg, and Q. Mao, Structure and Function of the Human Breast Cancer Resistance Protein (BCRP/ABCG2), Current Drug Metabolism, vol.11, issue.7, pp.603-617, 2010.
DOI : 10.2174/138920010792927325

S. Pommier, G. Quan, D. Christante, P. Muller, A. Newell et al., Characterizing the HER2/neu Status and Metastatic Potential of Breast Cancer Stem/Progenitor Cells, Annals of Surgical Oncology, vol.98, issue.Suppl 1, pp.613-623, 2010.
DOI : 10.1245/s10434-009-0730-z

B. Gras, L. Jacqueroud, A. Wierinckx, C. Lamblot, F. Fauvet et al., Snail Family Members Unequally Trigger EMT and Thereby Differ in Their Ability to Promote the Neoplastic Transformation of Mammary Epithelial Cells, PLoS ONE, vol.111, issue.3, p.92254
DOI : 10.1371/journal.pone.0092254.s003