I. Page, E. Allen, F. Chamberlain, A. Keys, J. Stamler et al., Dietary fat ant its relation to heart attacks and strokes, Circulation, vol.23, pp.133-136, 1961.

H. Bang and J. Dyerberg, PLASMA LIPIDS AND LIPOPROTEINS IN GREENLANDIC WEST COAST ESKIMOS, Acta Medica Scandinavica, vol.35, issue.Suppl. 493, pp.85-94, 1972.
DOI : 10.1111/j.0954-6820.1972.tb04782.x

J. Dyerberg and H. Bang, Lipid Metabolism, Atherogenesis, and Haemostasis in Eskimos: the Role of the Prostaglandin-3 Family, Pathophysiology of Haemostasis and Thrombosis, vol.8, issue.3-5, pp.227-233, 1979.
DOI : 10.1159/000214314

D. Kromhout, E. Bosschieter, and C. De-lezenne-coulander, The Inverse Relation between Fish Consumption and 20-Year Mortality from Coronary Heart Disease, New England Journal of Medicine, vol.312, issue.19, pp.1205-1209, 1985.
DOI : 10.1056/NEJM198505093121901

C. Von-schacky and P. Weber, Metabolism and effects on platelet function of the purified eicosapentaenoic and docosahexaenoic acids in humans., Journal of Clinical Investigation, vol.76, issue.6, pp.2446-2450, 1985.
DOI : 10.1172/JCI112261

J. Din, D. Newby, and A. Flapan, Omega 3 fatty acids and cardiovascular disease--fishing for a natural treatment, BMJ, vol.328, issue.7430, pp.30-35, 2004.
DOI : 10.1136/bmj.328.7430.30

S. Kwak, S. Myung, Y. Lee, H. Seo, . De-oliveira et al., Korean Meta-analysis Study Group, Efficacyof omega-3 fatty acid supplements (eicosapentaenoic acid and

D. Mozaffarian, Circulating and dietary omega-3 and omega-6 polyunsaturated fatty acids and incidence of CVD in the Multi-Ethnic study of atherosclerosis, J Am Heart Assoc, vol.2, p.506, 2013.

I. Brouwer, M. Katan, and P. Zock, Dietary alpha-linolenic acid is associated with reduced risk of fatal coronary heart disease, but increased prostate cancer risk: a meta-analysis, J Nutr, vol.134, pp.919-922, 2004.

A. Pan, M. Chen, R. Chowdhury, J. Wu, Q. Sun et al., ??-Linolenic acid and risk of cardiovascular disease: a systematic review and meta-analysis, American Journal of Clinical Nutrition, vol.96, issue.6, pp.1262-1273, 2012.
DOI : 10.3945/ajcn.112.044040

E. Holy, M. Forestier, E. Richter, A. Akhmedov, F. Leiber et al., Dietary ??-Linolenic Acid Inhibits Arterial Thrombus Formation, Tissue Factor Expression, and Platelet Activation, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.31, issue.8, pp.1772-1780, 2011.
DOI : 10.1161/ATVBAHA.111.226118

L. Rallidis, G. Paschos, G. Liakos, A. Velissaridou, G. Anastasiadis et al., Dietary ??-linolenic acid decreases C-reactive protein, serum amyloid A and interleukin-6 in dyslipidaemic patients, Atherosclerosis, vol.167, issue.2, pp.237-242, 2003.
DOI : 10.1016/S0021-9150(02)00427-6

G. Burdge and P. Calder, Dietary ??-linolenic acid and health-related outcomes: a metabolic perspective, Nutrition Research Reviews, vol.77, issue.01, pp.26-52, 2006.
DOI : 10.1046/j.1523-1747.2003.12123.x

S. Egert, F. Kannenberg, V. Somoza, H. Erbersdobler, and U. Wahrburg, Dietary alpha-linolenic acid, EPA, and DHA have differential effects on LDL fatty acid

B. Griffin and C. Williams, ApoE polymorphism and fish oil supplementation in subjects with an atherogenic lipoprotein phenotype, Arterioscler Thromb Vasc Biol, vol.20, pp.1990-1997, 2000.

M. Caslake, E. Miles, B. Kofler, G. Lietz, P. Curtis et al., Effect of sex and genotype on cardiovascular biomarker response to fish oils: the FINGEN Study, Am J Clin Nutr, vol.88, pp.618-629, 2008.

T. Mori, V. Burke, I. Puddey, G. Watts, O. Neal et al., Purified eicosapentaenoic and docosahexaenoic acids have differential effects on serum lipids and lipoproteins, LDL particle size, glucose, and insulin in mildly hyperlipidemic men, Am J Clin Nutr, vol.71, pp.1085-1094, 2000.

M. Suzukawa, M. Abbey, P. Howe, and P. Nestel, Effects of fish oil fatty acids on low density lipoprotein size, oxidizability, and uptake by macrophages, J Lipid Res, vol.36, pp.473-484, 1995.

T. Mori, R. Vandongen, L. Beilin, V. Burke, J. Morris et al., Effects of varying dietary fat, fish, and fish oils on blood lipids in a randomized controlled trial in men at risk of heart disease, Am J Clin Nutr, vol.59, pp.1060-1068, 1994.

M. Abbey, P. Clifton, M. Kestin, B. Belling, and P. Nestel, Effect of fish oil on lipoproteins, lecithin:cholesterol acyltransferase, and lipid transfer protein activity in humans, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.10, issue.1, pp.85-94, 1990.
DOI : 10.1161/01.ATV.10.1.85

H. Bang, J. Dyerberg, and A. Nielsen, Plasma lipid and lipoprotein pattern in Greenlandic West-coast Eskimos, Lancet, vol.1, pp.1143-1145, 1971.

Z. Kaplan and S. Jackson, The Role of Platelets in Atherothrombosis, Hematology, vol.2011, issue.1, pp.51-61, 2011.
DOI : 10.1182/asheducation-2011.1.51

S. Massberg, K. Brand, S. Gruner, S. Page, E. Muller et al., A Critical Role of Platelet Adhesion in the Initiation of Atherosclerotic Lesion Formation, The Journal of Experimental Medicine, vol.96, issue.7, pp.887-896, 2002.
DOI : 10.1161/01.RES.84.11.1237

J. Dyerberg and H. Bang, Haemostatic function and platelet polyunsaturated fatty acids in Eskimos, Lancet, vol.2, pp.433-435, 1975.

G. Nelson, P. Schmidt, G. Bartolini, D. Kelley, and D. Kyle, The effect of dietary arachidonic acid on platelet function, platelet fatty acid composition, and blood coagulation in humans, Lipids, vol.13, issue.4, pp.421-425, 1997.
DOI : 10.1007/s11745-997-0055-7

S. Goodnight, . Jr, W. Harris, W. Connor, and D. Illingworth, Polyunsaturated fatty acids, hyperlipidemia, and thrombosis, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.2, issue.2, pp.87-113, 1982.
DOI : 10.1161/01.ATV.2.2.87

W. Siess, P. Roth, B. Scherer, I. Kurzmann, B. Böhlig et al., Plateletmembrane fatty acids, platelet aggregation, and thromboxane formation during a mackerel diet, Lancet, vol.1, pp.441-444, 1980.

D. Prisco, M. Filippini, I. Francalanci, R. Paniccia, G. Gensini et al., Effect of n-3 fatty acid ethyl ester supplementation on fatty acid composition of the single platelet phospholipids and on platelet functions, Metabolism, vol.44, issue.5, pp.562-569, 1995.
DOI : 10.1016/0026-0495(95)90111-6

M. Phang, L. Lincz, and M. Garg, Eicosapentaenoic and Docosahexaenoic Acid Supplementations Reduce Platelet Aggregation and Hemostatic Markers Differentially in Men and Women, Journal of Nutrition, vol.143, issue.4, pp.457-463, 2013.
DOI : 10.3945/jn.112.171249

L. Hooper, R. Thompson, R. Harrison, C. Summerbell, H. Moore et al., Omega 3 fatty acids for prevention and treatment of cardiovascular disease
DOI : 10.1002/14651858.CD003177.pub2

F. Driss, E. Véricel, M. Lagarde, M. Dechavanne, and D. Ph, Inhibition of platelet aggregation and thromboxane synthesis after intake of small amount of icosapentaenoic acid, Thrombosis Research, vol.36, issue.5, pp.389-396, 1984.
DOI : 10.1016/0049-3848(84)90295-0

M. Lagarde, Functions and tocopherol content of blood platelets from elderly people after low intake of purified eicosapentaenoic acid, Thromb Res, vol.57, pp.1-12, 1990.

M. Retroconversion and . Of, in humans and rats after intake of a single dose of [13C]22:6n-3-triacylglycerols, Am J Clin Nutr, vol.2264, pp.6-3577, 1996.

N. Guillot, E. Caillet, M. Laville, C. Calzada, M. Lagarde et al., Increasing intakes of the long-chain ??-3 docosahexaenoic acid: effects on platelet functions and redox status in healthy men, The FASEB Journal, vol.23, issue.9, pp.2909-2916, 2009.
DOI : 10.1096/fj.09-133421

URL : https://hal.archives-ouvertes.fr/inserm-00387440

J. Conquer and B. Holub, Supplementation with an algae source of docosahexaenoic acid increases (n-3) fatty acid status and alters selected risk factors for heart disease in vegetarian subjects, J Nutr, vol.126, pp.3032-3039, 1996.

S. Akiba, T. Murata, K. Kitatani, and T. Sato, Involvement of Lipoxygenase Pathway in Docosapentaenoic Acid-Induced Inhibition of Platelet Aggregation., Biological & Pharmaceutical Bulletin, vol.23, issue.11, pp.1293-1297, 2000.
DOI : 10.1248/bpb.23.1293

M. Lagarde, Metabolism of fatty acids by platelets and the functions of various metabolites in mediating platelet function, Progress in Lipid Research, vol.27, issue.2, pp.135-152, 1988.
DOI : 10.1016/0163-7827(88)90008-2

S. Fisher and P. Weber, Thromboxane (TX)A3 is formed in human platelets after dietary eicosapentaenoic acid, Biochem Biophys Res Commun, vol.20116, pp.5-8, 1983.

S. Fisher and P. Weber, Thromboxane (TX)A3 and prostaglandin (PG)I3 are formed in man after dietary eicosapentaenoic acid: Identification and quantification by capillary gas chromatography-electron impact mass spectrometry, Biological Mass Spectrometry, vol.8, issue.9, pp.470-476, 1985.
DOI : 10.1002/bms.1200120905

U. Jung, C. Torrejon, A. Tighe, and R. Deckelbaum, N-3 Fatty acids and cardiovascular disease: mechanisms underlying beneficial effects, Am J Clin Nutr, vol.87, pp.2003-2009, 2008.

B. Samuelsson, Prostaglandin endoperoxides and thromboxanes: role in platelets and in vascular and respiratory smooth muscle, Acta Biol Med Ger, vol.35, pp.1055-1063, 1976.

D. Boukhchache and M. Lagarde, Interactions between prostaglandin precursors during their oxygenation by human platelets, Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism, vol.713, issue.2, pp.386-392, 1982.
DOI : 10.1016/0005-2760(82)90257-0

P. Swann, C. Parent, M. Croset, P. Fonlupt, M. Lagarde et al., Enrichment of platelet phospholipids with eicosapentaenoic acid and docosahexaenoic acid inhibits thromboxane A2/prostaglandin H2 receptor binding and function, J Biol Chem, vol.265, pp.21692-21697, 1990.

W. Smith, Y. Urade, and P. Jakobsson, Enzymes of the Cyclooxygenase Pathways of Prostanoid Biosynthesis, Chemical Reviews, vol.111, issue.10, pp.5821-5865, 2011.
DOI : 10.1021/cr2002992

E. Lev, A. Solodky, A. Harel, A. Mager, D. Brosh et al., Treatment of Aspirin-Resistant Patients With Omega-3 Fatty Acids Versus Aspirin Dose Escalation, Journal of the American College of Cardiology, vol.55, issue.2, pp.114-121, 2010.
DOI : 10.1016/j.jacc.2009.08.039

G. Gajos, P. Rostoff, A. Undas, and W. Piwowarska, Effects of Polyunsaturated Omega-3 Fatty Acids on Responsiveness to Dual Antiplatelet Therapy in Patients Undergoing Percutaneous Coronary Intervention, Journal of the American College of Cardiology, vol.55, issue.16, pp.1671-168, 2010.
DOI : 10.1016/j.jacc.2009.11.080

E. Shahar, A. Folsom, K. Wu, B. Dennis, T. Shimakawa et al., Associations of fish intake and dietary n-3 polyunsaturated fatty acids with a hypocoagulable profile. The Atherosclerosis Risk in Communities (ARIC) Study, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.13, issue.8, pp.1205-1212, 1993.
DOI : 10.1161/01.ATV.13.8.1205

G. Gajos, J. Zalewski, P. Rostoff, J. Nessler, W. Piwowarska et al., Reduced Thrombin Formation and Altered Fibrin Clot Properties Induced by Polyunsaturated Omega-3 Fatty Acids on Top of Dual Antiplatelet Therapy in Patients Undergoing Percutaneous Coronary Intervention (OMEGA-PCI Clot), Arteriosclerosis, Thrombosis, and Vascular Biology, vol.31, issue.7, pp.1696-1702, 2011.
DOI : 10.1161/ATVBAHA.111.228593

T. Hishinuma, T. Yamazaki, and M. Mizugaki, Effects of long-term supplementation of eicosapentanoic and docosahexanoic acid on the 2-, 3-series prostacyclin production by endothelial cells, Prostaglandins & Other Lipid Mediators, vol.57, issue.5-6, pp.333-340, 1999.
DOI : 10.1016/S0090-6980(98)00083-5

C. Bénistant, F. Achard, B. Salma, S. Lagarde, and M. , Docosapentaenoic acid (22:5,n-3): metabolism and effect on prostacyclin production in endothelial cells, Prostaglandins, Leukotrienes and Essential Fatty Acids, vol.55, issue.4, pp.5-8
DOI : 10.1016/S0952-3278(96)90010-1

R. Fischer, A. Konkel, H. Mehling, K. Blossey, A. Gapelyuk et al., Dietary omega-3 fatty acids modulate the eicosanoid profile in man primarily via the CYPepoxygenase pathway, J Lipid Res, p.2014

C. Arnold, M. Markovic, K. Blossey, G. Wallukat, R. Fischer et al., Arachidonic Acid-metabolizing Cytochrome P450 Enzymes Are Targets of ??-3 Fatty Acids, Journal of Biological Chemistry, vol.285, issue.43, pp.32720-32733, 2010.
DOI : 10.1074/jbc.M110.118406

M. Hersberger, Potential role of the lipoxygenase derived lipid mediators in atherosclerosis: leukotrienes, lipoxins and resolvins, Clinical Chemistry and Laboratory Medicine, vol.48, issue.8, pp.1063-1073, 2010.
DOI : 10.1515/CCLM.2010.212

C. Serhan, C. Clish, J. Brannon, S. Colgan, N. Chiang et al., Novel Functional Sets of Lipid-Derived Mediators with Antiinflammatory Actions Generated from Omega-3 Fatty Acids via Cyclooxygenase 2???Nonsteroidal Antiinflammatory Drugs and Transcellular Processing, The Journal of Experimental Medicine, vol.1437, issue.8, pp.1197-1204, 2000.
DOI : 10.1056/NEJM199704033361401

M. Arita, F. Bianchini, J. Aliberti, A. Sher, N. Chiang et al., Stereochemical assignment, antiinflammatory properties, and receptor for the omega-3 lipid mediator resolvin E1, The Journal of Experimental Medicine, vol.285, issue.5, pp.713-722, 2005.
DOI : 10.1074/jbc.271.37.22663

M. Spite and C. Serhan, Novel Lipid Mediators Promote Resolution of Acute Inflammation: Impact of Aspirin and Statins, Circulation Research, vol.107, issue.10, pp.1170-1184, 2010.
DOI : 10.1161/CIRCRESAHA.110.223883

M. Dona, G. Fredman, J. Schwab, N. Chiang, M. Arita et al., Resolvin E1, an EPA-derived mediator in whole blood, selectively counterregulates leukocytes ans platelets, Blood, vol.112, pp.3848-3855, 2008.

P. Needleman, M. Minkes, and A. Raz, Thromboxanes: selective biosynthesis and distinct biological properties, Science, vol.193, issue.4248, pp.163-165, 1976.
DOI : 10.1126/science.945611

P. Needleman, A. Raz, M. Minkes, J. Ferrendelli, and H. Sprecher, Triene prostaglandins: Prostacyclin and thromboxane biosynthesis and unique biological properties, Proceedings of the National Academy of Sciences, vol.76, issue.2, pp.944-948, 1979.
DOI : 10.1073/pnas.76.2.944

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC383100

N. Yerram, S. Moore, and A. Spector, Eicosapentaenoic acid metabolism in brain microvessel endothelium: effect on prostaglandin formation, J Lipid Res, vol.30, pp.1747-1757, 1989.

S. Hegde, N. Kaushal, K. Ravindra, C. Chiaro, and K. Hafer, ??12-prostaglandin J3, an omega-3 fatty acid-derived metabolite, selectively ablates leukemia stem cells in mice, Blood, vol.118, issue.26, pp.6909-6919, 2011.
DOI : 10.1182/blood-2010-11-317750

J. Lefils-lacourtablaise, M. Socorro, A. Géloën, P. Daira, C. Debard et al., The eicosapentaenoic acid metabolite 15-deoxy-?(12,14)-prostaglandin J3 increases adiponectin secretion by adipocytes partly via a PPAR?-dependent mechanism

M. Whitaker, A. Wyche, F. Fitzpatrick, H. Sprecher, and P. Needleman, Triene prostaglandins: Prostaglandin D3 and icosapentaenoic acid as potential antithrombotic substances, Proceedings of the National Academy of Sciences, vol.76, issue.11, pp.5919-5923, 1979.
DOI : 10.1073/pnas.76.11.5919

H. Juan and W. Sametz, Dihomo-??-linolenic acid increases the metabolism of eicosapentaenoic acid in perfused vascular tissue, Prostaglandins, Leukotrienes and Medicine, vol.19, issue.1, pp.79-86, 1985.
DOI : 10.1016/0262-1746(85)90162-3

J. Hawkes, M. James, and C. Lg, Biological activity of prostaglandin E3 with regard to oedema formation in mice, Agents and Actions, vol.35, issue.1-2, pp.85-87, 1992.
DOI : 10.1007/BF01990956

S. Tull, C. Yates, B. Maskrey, O. Donnell, V. Madden et al., Omega-3 Fatty Acids and Inflammation: Novel Interactions Reveal a New Step in Neutrophil Recruitment, PLoS Biology, vol.45, issue.8, p.1000177, 2009.
DOI : 10.1371/journal.pbio.1000177.t003

P. Calder, Polyunsaturated fatty acids and inflammatory processes: New twists in an old tale, Biochimie, vol.91, issue.6, pp.791-795, 2009.
DOI : 10.1016/j.biochi.2009.01.008

M. Croset, A. Sala, G. Folco, and M. Lagarde, Inhibition by lipoxygenase products of TXA2-like responses of platelets and vascular smooth muscle, Biochemical Pharmacology, vol.37, issue.7, pp.1275-1280, 1988.
DOI : 10.1016/0006-2952(88)90782-4

P. Fonlupt, M. Croset, and M. Lagarde, 12-HETE inhibits the binding of PGH2/TxA2 receptor ligands in human platelets, Thrombosis Research, vol.63, issue.2, pp.239-248, 1991.
DOI : 10.1016/0049-3848(91)90287-7

A. Merched, K. Ko, K. Gotlinger, C. Serhan, and L. Chan, Atherosclerosis: evidence for impairment of resolution of vascular inflammation governed by specific lipid mediators, The FASEB Journal, vol.22, issue.10, pp.3595-35606, 2008.
DOI : 10.1096/fj.08-112201

P. Chen, E. Véricel, M. Lagarde, and M. Guichardant, Poxytrins, a class of oxygenated products from polyunsaturated fatty acids, potently inhibit blood platelet aggregation, The FASEB Journal, vol.25, issue.1
DOI : 10.1096/fj.10-161836

URL : https://hal.archives-ouvertes.fr/inserm-00517396

M. Guichardant, Protectin DX, a double lipoxygenase product of DHA, inhibits both ROS production in human neutrophils and cyclooxygenase activities, Lipids, vol.49, pp.49-57, 2014.
URL : https://hal.archives-ouvertes.fr/inserm-00909219

L. Balas, M. Guichardant, T. Durand, and M. Lagarde, Confusion between protectin D1 (PD1) and its isomer protectin DX (PDX). An overview on the dihydroxy-docosatrienes described to date, Biochimie, vol.99, pp.1-7, 2014.
DOI : 10.1016/j.biochi.2013.11.006

URL : https://hal.archives-ouvertes.fr/hal-00952184

Y. Lu, H. Tian, and S. Hong, 21-dihydroxy-docosahexaenoic Acids: Structures, Formation Pathways, and Enhancement of Wound Healing, J Lipid Res, vol.1451, pp.923-932, 2010.

K. Yagi, Lipid peroxides and human diseases, Chemistry and Physics of Lipids, vol.45, issue.2-4, pp.337-351, 1987.
DOI : 10.1016/0009-3084(87)90071-5

J. Brown and K. Wahle, Effect of fish-oil and vitamin E supplementation on lipid peroxidation and whole-blood aggregation in man, Clinica Chimica Acta, vol.193, issue.3, pp.147-156, 1990.
DOI : 10.1016/0009-8981(90)90246-O

D. Harats, Y. Dabach, M. Ben-naim, R. Schwartz, E. Berry et al., Fish oil ingestion in smokers and nonsmokers enhances peroxidation of plasma lipoproteins, Atherosclerosis, vol.90, issue.2-3, pp.127-139, 1991.
DOI : 10.1016/0021-9150(91)90107-E

I. Brude, C. Drevon, and I. Hjermann, Peroxidation of LDL From Combined-Hyperlipidemic Male Smokers Supplied With ??-3 Fatty Acids and Antioxidants, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.17, issue.11, pp.2576-2588, 1997.
DOI : 10.1161/01.ATV.17.11.2576

A. Polette, D. Lemaitre, M. Lagarde, and E. Véricel, N-3 fatty acid-induced lipid peroxidation in human platelets is prevented by catechins, Thromb Haemost, vol.75, pp.945-949, 1996.

D. Lemaitre, E. Véricel, A. Polette, and M. Lagarde, Effects of fatty acids on human platelet glutathione peroxidase: possible role of oxidative stress, Biochemical Pharmacology, vol.53, issue.4, pp.479-486, 1997.
DOI : 10.1016/S0006-2952(96)00734-4

E. Véricel, A. Polette, S. Bacot, C. Calzada, and M. Lagarde, Pro- and antioxidant activities of docosahexaenoic acid on human blood platelets, Journal of Thrombosis and Haemostasis, vol.279, issue.3, pp.566-572, 2003.
DOI : 10.1046/j.1538-7836.2003.00076.x

A. Ishikado, K. Morino, Y. Nishio, F. Nakagawa, A. Mukose et al., 4-Hydroxy Hexenal Derived from Docosahexaenoic Acid Protects Endothelial Cells via Nrf2 Activation, PLoS ONE, vol.29, issue.7, p.69415, 2013.
DOI : 10.1371/journal.pone.0069415.t004

E. Giordano and F. Visioli, Long-chain omega 3 fatty acids: Molecular bases of potential antioxidant actions, Prostaglandins, Leukotrienes and Essential Fatty Acids (PLEFA), vol.90, issue.1, pp.1-4, 2014.
DOI : 10.1016/j.plefa.2013.11.002

D. Richard, C. Wolf, U. Barbe, K. Kefi, P. Bausero et al., Docosahexaenoic acid down-regulates endothelial Nox4 through as PLA2 signaling pathway, Biochem

S. Mebarek, N. Ermak, A. Benzaria, S. Vicca, M. Dubois et al., Effects of increasing docosahexaenoic acid intake in human healthy volunteers on lymphocyte activation and monocyte apoptosis, British Journal of Nutrition, vol.130, issue.06, pp.852-858, 2009.
DOI : 10.1016/j.clnu.2006.03.004

URL : https://hal.archives-ouvertes.fr/inserm-00322838

A. Benedetti, M. Comporti, R. Fulceri, and H. Esterbauer, Cytotoxic aldehydes originating from the peroxidation of liver microsomal lipids, Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism, vol.792, issue.2, pp.281-286, 1980.
DOI : 10.1016/0005-2760(84)90219-4

H. Esterbauer, R. Schaur, and H. Zollner, Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes, Free Radical Biology and Medicine, vol.11, issue.1, pp.81-128, 1991.
DOI : 10.1016/0891-5849(91)90192-6

D. Nadkarni and L. Sayre, Structural Definition of Early Lysine and Histidine Adduction Chemistry of 4-Hydroxynonenal, Chemical Research in Toxicology, vol.8, issue.2, pp.284-291, 1995.
DOI : 10.1021/tx00044a014

G. Jürgens, J. Lang, and H. Esterbauer, Modification of human low-density lipoprotein by the lipid peroxidation product 4-hydroxynonenal, Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism, vol.875, issue.1, pp.103-114, 1986.
DOI : 10.1016/0005-2760(86)90016-0

S. Lee and I. Blair, Characterization of 4-Oxo-2-nonenal as a Novel Product of Lipid Peroxidation, Chemical Research in Toxicology, vol.13, issue.8, pp.698-702, 2000.
DOI : 10.1021/tx000101a

S. Lee, T. Oc, and I. Blair, Vitamin C-Induced Decomposition of Lipid Hydroperoxides to Endogenous Genotoxins, Science, vol.292, issue.5524, pp.2083-2086, 2001.
DOI : 10.1126/science.1059501

J. Doorn and D. Petersen, Covalent adduction of nucleophilic amino acids by

H. Esterbauer, G. Jurgens, O. Quehenberger, and E. Koller, Autoxidation of human low density lipoprotein: loss of polyunsaturated fatty acids and vitamin E and generation of aldehydes, J Lipid Res, vol.28, pp.495-509, 1987.

U. Steinbrecher, Oxidation of human low density lipoprotein results in derivatization of lysine residues of apolipoprotein B by lipid peroxide decomposition products, J Biol Chem, vol.262, pp.3603-3608, 1987.

S. Yamada, T. Funada, N. Shibata, M. Kobayashi, Y. Kawai et al., Protein-bound 4-hydroxy-2-hexenal as a marker of oxidized n-3

S. Collot-teixeira, J. Martin, C. Mcdermott-roe, R. Poston, and J. Mcgregor, CD36 and macrophages in atherosclerosis, Cardiovascular Research, vol.75, issue.3, pp.468-477, 2007.
DOI : 10.1016/j.cardiores.2007.03.010

M. Guichardant, P. Taibi-tronche, L. Fay, and M. Lagarde, Covalent modifications of aminophospholipids by 4-hydroxynonenal, Free Radical Biology and Medicine, vol.25, issue.9, pp.1049-1056, 1998.
DOI : 10.1016/S0891-5849(98)00149-X

M. Lagarde and M. Guichardant, Evidence for in situ ethanolamine phospholipid adducts with hydroxy-alkenals, J Lipid Res, vol.48, pp.816-825, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00139399

H. Hoff, O. Neil, J. Wu, Z. Hoppe, G. Salomon et al., Phospholipid Hydroxyalkenals: Biological and Chemical Properties of Specific Oxidized Lipids Present in Atherosclerotic Lesions, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.23, issue.2, pp.275-282, 2003.
DOI : 10.1161/01.ATV.0000051407.42536.73

R. Salomon and X. Gu, Critical Insights into Cardiovascular Disease from Basic Research on the Oxidation of Phospholipids: The ??-Hydroxyalkenal Phospholipid Hypothesis, Chemical Research in Toxicology, vol.24, issue.11, pp.1791-1802, 2011.
DOI : 10.1021/tx200207z

K. Ley, Y. Miller, and C. Hedrick, Monocyte and Macrophage Dynamics During Atherogenesis, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.31, issue.7, pp.1506-1516, 2011.
DOI : 10.1161/ATVBAHA.110.221127

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3133596

S. Rahaman, . Lennon, . Dj, M. Febbraio, . Podrez et al., A CD36-dependent signaling cascade is necessary for macrophage foam cell formation, Cell Metabolism, vol.4, issue.3, pp.211-221, 2006.
DOI : 10.1016/j.cmet.2006.06.007

C. Brame, R. Salomon, J. Morrow, and L. Roberts, Identification of Extremely Reactive ??-Ketoaldehydes (Isolevuglandins) as Products of the Isoprostane Pathway and Characterization of Their Lysyl Protein Adducts, Journal of Biological Chemistry, vol.274, issue.19, pp.13139-13146, 1999.
DOI : 10.1074/jbc.274.19.13139

L. Guo, Z. Chen, B. Cox, V. Amarnath, R. Epand et al., Phosphatidylethanolamines Modified by ??-Ketoaldehyde (??KA) Induce Endoplasmic Reticulum Stress and Endothelial Activation, Journal of Biological Chemistry, vol.286, issue.20, pp.18170-18180, 2011.
DOI : 10.1074/jbc.M110.213470

L. Guo, Z. Chen, V. Amarnath, and S. Davies, Identification of novel bioactive aldehyde-modified phosphatidylethanolamines formed by lipid peroxidation, Free Radical Biology and Medicine, vol.53, issue.6, pp.1226-1238, 2012.
DOI : 10.1016/j.freeradbiomed.2012.07.077

C. Sullivan, E. Matafonova, L. Roberts, V. Amarnath, and S. Davies, Isoketals form cytotoxic phosphatidylethanolamine adducts in cells, The Journal of Lipid Research, vol.51, issue.5, pp.999-1009, 2010.
DOI : 10.1194/jlr.M001040

N. Bernoud-hubac, L. Fay, V. Armarnath, M. Guichardant, S. Bacot et al., Covalent binding of isoketals to ethanolamine phospholipids, Free Radical Biology and Medicine, vol.37, issue.10, pp.1604-1611, 2004.
DOI : 10.1016/j.freeradbiomed.2004.07.031

N. Bernoud-hubac, D. Alam, J. Lefils, S. Davies, V. Amarnath et al., Low concentrations of reactive gamma-ketoaldehydes prime thromboxane-dependent human platelet aggregation via p38-MAPK activation

R. Salomon, E. Batyreva, K. Kaur, D. Sprecher, M. Schreiber et al., Isolevuglandin???protein adducts in humans: products of free radical-induced lipid oxidation through the isoprostane pathway, Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, vol.1485, issue.2-3, pp.225-235, 2000.
DOI : 10.1016/S1388-1981(00)00038-X

D. Pratico, E. Smyth, F. Violi, and G. Fitzgerald, Local amplification of platelet function by 8-Epi prostaglandin F2alpha is not mediated by thromboxane receptor isoforms, J Biol Chem, vol.271, pp.4916-14924, 1996.

L. Gao, H. Yin, G. Milne, N. Porter, and J. Morrow, Formation of F-ring Isoprostane-like Compounds (F3-Isoprostanes) in Vivo from Eicosapentaenoic Acid, Journal of Biological Chemistry, vol.281, issue.20, pp.14092-14099, 2006.
DOI : 10.1074/jbc.M601035200

I. Roberts, . Lj, G. Milne, and . Isoprostanes, Isoprostanes, The Journal of Lipid Research, vol.50, issue.Supplement, pp.219-223, 2009.
DOI : 10.1194/jlr.R800037-JLR200

L. Roberts, T. Montine, W. Markesbery, A. Tapper, P. Hardy et al., Formation of Isoprostane-like Compounds (Neuroprostanes) in Vivo from Docosahexaenoic Acid, Journal of Biological Chemistry, vol.273, issue.22, pp.3605-13612, 1998.
DOI : 10.1074/jbc.273.22.13605

O. Berdeaux, E. Pujos-guillot, A. Mazur, and B. Comte, Lipid profiling following Intake of the omega 3 fatty acid DHA identifies the peroxidized metabolites F4-neuroprostanes as the best predictors of atherosclerosis prevention, PLoS ONE, vol.9, p.89393, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00952161

K. Strassburg, A. Huijbrechts, K. Kortekaas, J. Lindeman, T. Pedersen et al., Quantitative profiling of oxylipins through comprehensive LC-MS/MS analysis: application in cardiac surgery, Analytical and Bioanalytical Chemistry, vol.331, issue.3, pp.1413-1426, 2012.
DOI : 10.1007/s00216-012-6226-x

M. Giera, A. Ioan-facsinay, R. Toes, F. Gao, J. Dalli et al., Lipid and lipid mediator profiling of human synovial fluid in rheumatoid arthritis patients by means of LC???MS/MS, Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, vol.1821, issue.11, pp.1415-1424, 2012.
DOI : 10.1016/j.bbalip.2012.07.011

J. Lang, C. Celetto, and H. Esterbauer, Quantitative determination of the lipid peroxidation product 4-hydroxynonenal by high-performance liquid chromatography, Analytical Biochemistry, vol.150, issue.2, pp.369-378, 1985.
DOI : 10.1016/0003-2697(85)90525-1

H. Esterbauer and K. Cheeseman, [42] Determination of aldehydic lipid peroxidation products: Malonaldehyde and 4-hydroxynonenal, Methods Enzymol, vol.186, pp.407-421, 1990.
DOI : 10.1016/0076-6879(90)86134-H

T. Murphy, V. Amarnath, and M. Picklo, Mitochondrial oxidation of 4-hydroxy-2-nonenal in rat cerebral cortex, Journal of Neurochemistry, vol.93, issue.6, pp.1313-1321, 2003.
DOI : 10.1046/j.1471-4159.2003.01628.x

G. Cordis, D. Das, and W. Riedel, High-performance liquid chromatographic peak identification of 2,4-dinitrophenylhydrazine derivatives of lipid peroxidation aldehydes by photodiode array detection, Journal of Chromatography A, vol.798, issue.1-2, pp.117-123, 1998.
DOI : 10.1016/S0021-9673(97)01161-8

F. Van-kuijk, L. Holte, and E. Dratz, 4-Hydroxyhexenal: A lipid peroxidation product derived from oxidized docosahexaenoic acid, Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism, vol.1043, issue.1, pp.116-118, 1990.
DOI : 10.1016/0005-2760(90)90118-H

Y. Kawai, S. Takeda, and J. Terao, Lipidomic Analysis for Lipid Peroxidation-Derived Aldehydes Using Gas Chromatography-Mass Spectrometry, Chemical Research in Toxicology, vol.20, issue.1, pp.99-107, 2007.
DOI : 10.1021/tx060199e

B. Zarrouki, A. Soares, M. Guichardant, M. Lagarde, and A. Géloën, The lipid peroxidation end-product 4-HNE induces COX-2 expression through p38MAPK activation in 3T3-L1 adipose cell, FEBS Letters, vol.38, issue.13, pp.2394-2400, 2007.
DOI : 10.1016/j.febslet.2007.04.048

E. Long, I. Smoliakova, A. Honzatko, and M. Picklo, Structural Characterization of ??,??-Unsaturated Aldehydes by GC/MS is Dependent upon Ionization Method, Lipids, vol.79, issue.7, pp.765-774, 2008.
DOI : 10.1007/s11745-008-3199-9

M. Michalski, Dietary oxidized n-3 PUFA induce oxidative stress and inflammation: role of intestinal absorption of 4-HHE and reactivity in intestinal cells, J Lipid Res, vol.53, pp.2069-2080, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00725905

M. Wang, H. Fang, and X. Han, Shotgun Lipidomics Analysis of 4-Hydroxyalkenal Species Directly from Lipid Extracts after One-Step in Situ Derivatization, Analytical Chemistry, vol.84, issue.10, pp.4580-4586, 2012.
DOI : 10.1021/ac300695p

N. Bernoud-hubac, S. Davies, O. Boutaud, and L. Roberts, Analysis of Neuroketals Protein Adducts by Liquid Chromatography Electrospray Ionization