H. Oakley, S. Cole, S. Logan, E. Maus, P. Shao et al., Intraneuronal beta-Amyloid Aggregates, Neurodegeneration, and Neuron Loss in Transgenic Mice with Five Familial Alzheimer's Disease Mutations: Potential Factors in Amyloid Plaque Formation, Journal of Neuroscience, vol.26, issue.40, pp.10129-10140, 2006.
DOI : 10.1523/JNEUROSCI.1202-06.2006

J. Hardy and D. Selkoe, The Amyloid Hypothesis of Alzheimer's Disease: Progress and Problems on the Road to Therapeutics, Science, vol.297, issue.5580, pp.353-356, 2002.
DOI : 10.1126/science.1072994

S. Hong, O. Quintero-monzon, B. Ostaszewski, D. Podlisny, W. Cavanaugh et al., Dynamic Analysis of Amyloid ??-Protein in Behaving Mice Reveals Opposing Changes in ISF versus Parenchymal A?? during Age-Related Plaque Formation, Journal of Neuroscience, vol.31, issue.44, pp.15861-15869, 2011.
DOI : 10.1523/JNEUROSCI.3272-11.2011

C. Masters and D. Selkoe, Biochemistry of Amyloid ??-Protein and Amyloid Deposits in Alzheimer Disease, Cold Spring Harbor Perspectives in Medicine, vol.2, issue.6, p.6262, 2012.
DOI : 10.1101/cshperspect.a006262

L. Mucke and D. Selkoe, Neurotoxicity of Amyloid ??-Protein: Synaptic and Network Dysfunction, Cold Spring Harbor Perspectives in Medicine, vol.2, issue.7, p.6338, 2012.
DOI : 10.1101/cshperspect.a006338

H. Rice, T. Young-pearse, and D. Selkoe, Systematic Evaluation of Candidate Ligands Regulating Ectodomain Shedding of Amyloid Precursor Protein, Biochemistry, vol.52, issue.19, pp.3264-3277, 2013.
DOI : 10.1021/bi400165f

R. Kimura and M. Ohno, Impairments in remote memory stabilization precede hippocampal synaptic and cognitive failures in 5XFAD Alzheimer mouse model, Neurobiology of Disease, vol.33, issue.2, pp.229-235, 2009.
DOI : 10.1016/j.nbd.2008.10.006

N. Crouzin, K. Baranger, M. Cavalier, Y. Marchalant, C. Cohen-solal et al., Area-Specific Alterations of Synaptic Plasticity in the 5XFAD Mouse Model of Alzheimer???s Disease: Dissociation between Somatosensory Cortex and Hippocampus, PLoS ONE, vol.27, issue.9, p.74667, 2013.
DOI : 10.1371/journal.pone.0074667.g003

L. Devi, M. Alldred, S. Ginsberg, and M. Ohno, Sex- and brain region-specific acceleration of ??-amyloidogenesis following behavioral stress in a mouse model of Alzheimer's disease, Molecular Brain, vol.3, issue.1, p.34, 2010.
DOI : 10.1186/1756-6606-3-34

L. Devi and M. Ohno, Phospho-eIF2?? Level Is Important for Determining Abilities of BACE1 Reduction to Rescue Cholinergic Neurodegeneration and Memory Defects in 5XFAD Mice, PLoS ONE, vol.5, issue.9, p.12974, 2010.
DOI : 10.1371/journal.pone.0012974.g005

E. Joyashiki, Y. Matsuya, and C. Tohda, Sominone Improves Memory Impairments and Increases Axonal Density in Alzheimer's Disease Model Mice, 5XFAD, International Journal of Neuroscience, vol.30, issue.3, pp.181-190, 2011.
DOI : 10.3109/00207454.2010.541571

S. Jawhar, A. Trawicka, C. Jenneckens, T. Bayer, and O. Wirths, Motor deficits, neuron loss, and reduced anxiety coinciding with axonal degeneration and intraneuronal Abeta aggregation in the 5XFAD mouse model of Alzheimer's disease, Neurobiol Aging, vol.33, pp.196-129, 2012.

L. Devi and M. Ohno, Mechanisms that lessen benefits of beta-secretase reduction in a mouse model of Alzheimer's disease. Transl Psychiatry, p.284, 2013.

S. Girard, K. Baranger, C. Gauthier, M. Jacquet, A. Bernard et al., Evidence for early cognitive impairment related to frontal cortex in the 5XFAD mouse model of Alzheimer's disease, J Alzheimers Dis, vol.33, pp.781-796, 2013.

P. Giannoni, F. Gaven, D. De-bundel, K. Baranger, E. Marchetti-gauthier et al., Early administration of RS 67333, a specific 5-HT4 receptor agonist, prevents amyloidogenesis and behavioral deficits in the 5XFAD mouse model of Alzheimer???s disease, Frontiers in Aging Neuroscience, vol.5, p.96, 2013.
DOI : 10.3389/fnagi.2013.00096

J. Hongpaisan, M. Sun, and D. Alkon, PKC ?? Activation Prevents Synaptic Loss, A?? Elevation, and Cognitive Deficits in Alzheimer's Disease Transgenic Mice, Journal of Neuroscience, vol.31, issue.2, pp.630-643, 2011.
DOI : 10.1523/JNEUROSCI.5209-10.2011

X. Zhang, Y. Cai, K. Xiong, H. Cai, X. Luo et al., ????-Secretase-1 elevation in transgenic mouse models of Alzheimer??????s disease is associated with synaptic/axonal pathology and amyloidogenesis: implications for neuritic plaque development, European Journal of Neuroscience, vol.27, issue.12, pp.2271-2283, 2009.
DOI : 10.1111/j.1460-9568.2009.07017.x

C. Shao, S. Mirra, H. Sait, T. Sacktor, and E. Sigurdsson, Postsynaptic degeneration as revealed by PSD-95 reduction occurs after advanced A?? and tau pathology in transgenic mouse models of Alzheimer???s disease, Acta Neuropathologica, vol.30, issue.3, pp.285-292, 2011.
DOI : 10.1007/s00401-011-0843-x

M. Ohno, Failures to reconsolidate memory in a mouse model of Alzheimer???s disease, Neurobiology of Learning and Memory, vol.92, issue.3, pp.455-459, 2009.
DOI : 10.1016/j.nlm.2009.05.001

S. Girard, M. Jacquet, K. Baranger, M. Migliorati, G. Escoffier et al., Onset of hippocampus-dependent memory impairments in 5XFAD transgenic mouse model of Alzheimer's disease, Hippocampus, vol.29, issue.7, pp.762-772, 2014.
DOI : 10.1002/hipo.22267

S. Crowe and G. Ellis-davies, Spine pruning in 5xFAD mice starts on basal dendrites of layer 5 pyramidal neurons, Brain Structure and Function, vol.2, issue.3, pp.571-580, 2014.
DOI : 10.1007/s00429-013-0518-6

Y. Buskila, S. Crowe, and G. Ellis-davies, Synaptic deficits in layer 5 neurons precede overt structural decay in 5xFAD mice, Neuroscience, vol.254, pp.152-159, 2013.
DOI : 10.1016/j.neuroscience.2013.09.016

W. Eimer and R. Vassar, Neuron loss in the 5XFAD mouse model of Alzheimer's disease correlates with intraneuronal Abeta42 accumulation and Caspase-3 activation, Mol Neurodegener, vol.8, issue.2, 2013.

P. Reddy, S. Mcweeney, B. Park, M. Manczak, R. Gutala et al., Gene expression profiles of transcripts in amyloid precursor protein transgenic mice: up-regulation of mitochondrial metabolism and apoptotic genes is an early cellular change in Alzheimer's disease, Human Molecular Genetics, vol.13, issue.12, pp.1225-1240, 2004.
DOI : 10.1093/hmg/ddh140

T. Unger, Z. Korade, O. Lazarov, D. Terrano, N. Schor et al., Transcriptome Differences Between the Frontal Cortex and Hippocampus of Wild-Type and Humanized Presenilin-1 Transgenic Mice, The American Journal of Geriatric Psychiatry, vol.13, issue.12, pp.1041-1051, 2005.
DOI : 10.1097/00019442-200512000-00003

K. Mirnics, Z. Korade, D. Arion, O. Lazarov, T. Unger et al., Presenilin-1-Dependent Transcriptome Changes, Journal of Neuroscience, vol.25, issue.6, pp.1571-1578, 2005.
DOI : 10.1523/JNEUROSCI.4145-04.2005

S. Chen, Q. Cai, Y. Shen, P. Wang, G. Teng et al., Age-related changes in brain metabolites and cognitive function in APP/PS1 transgenic mice, Behavioural Brain Research, vol.235, issue.1, pp.1-6, 2012.
DOI : 10.1016/j.bbr.2012.07.016

T. Kim, J. Lee, S. Park, K. Lee, J. Seo et al., Analysis of differential plaque depositions in the brains of Tg2576 and Tg-APPswe/PS1dE9 transgenic mouse models of Alzheimer disease, Experimental & Molecular Medicine, vol.50, issue.8, pp.492-502, 2012.
DOI : 10.3858/emm.2012.44.8.056

V. Gatta, D. Aurora, M. Granzotto, A. Stuppia, L. Sensi et al., Early and sustained altered expression of aging-related genes in young 3xTg-AD mice, Cell Death and Disease, vol.58, issue.2, p.1054, 2014.
DOI : 10.1038/nrneurol.2012.156

K. Kim, M. Moon, S. Yu, I. Mook-jung, and J. Kim, RNA-Seq analysis of frontal cortex and cerebellum from 5XFAD mice at early stage of disease pathology, J Alzheimers Dis, vol.29, pp.793-808, 2012.

Y. Bouter, T. Kacprowski, R. Weissmann, K. Dietrich, H. Borgers et al., Deciphering the molecular profile of plaques, memory decline and neuron loss in two mouse models for Alzheimer's disease by deep sequencing, Front Aging Neurosci, vol.6, p.75, 2014.

A. Schwarzman, L. Gregori, M. Vitek, S. Lyubski, W. Strittmatter et al., Transthyretin sequesters amyloid beta protein and prevents amyloid formation., Proceedings of the National Academy of Sciences, vol.91, issue.18, pp.8368-8372, 1994.
DOI : 10.1073/pnas.91.18.8368

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC44607

S. Choi, S. Leight, V. Lee, T. Li, P. Wong et al., Accelerated A?? Deposition in APPswe/PS1??E9 Mice with Hemizygous Deletions of TTR (Transthyretin), Journal of Neuroscience, vol.27, issue.26, pp.7006-7010, 2007.
DOI : 10.1523/JNEUROSCI.1919-07.2007

H. Li, B. Wang, Z. Wang, Q. Guo, K. Tabuchi et al., Soluble amyloid precursor protein (APP) regulates transthyretin and Klotho gene expression without rescuing the essential function of APP, Proceedings of the National Academy of Sciences, vol.107, issue.40, pp.17362-17367, 2010.
DOI : 10.1073/pnas.1012568107

T. Stein and J. Johnson, Lack of neurodegeneration in transgenic mice overexpressing mutant amyloid precursor protein is associated with increased levels of transthyretin and the activation of cell survival pathways, J Neurosci, vol.22, pp.7380-7388, 2002.

M. Kuro-o, Y. Matsumura, H. Aizawa, H. Kawaguchi, T. Suga et al., Mutation of the mouse klotho gene leads to a syndrome resembling ageing, Nature, vol.390, issue.6655, pp.45-51, 1997.
DOI : 10.1038/36285

H. Kurosu, M. Yamamoto, J. Clark, J. Pastor, A. Nandi et al., Suppression of Aging in Mice by the Hormone Klotho, Science, vol.309, issue.5742, pp.1829-1833, 2005.
DOI : 10.1126/science.1112766

A. Imura, Y. Tsuji, M. Murata, R. Maeda, K. Kubota et al., ??-Klotho as a Regulator of Calcium Homeostasis, Science, vol.316, issue.5831, pp.1615-1618, 2007.
DOI : 10.1126/science.1135901

L. Xu, R. Sapolsky, and R. Giffard, Differential Sensitivity of Murine Astrocytes and Neurons from Different Brain Regions to Injury, Experimental Neurology, vol.169, issue.2, pp.416-424, 2001.
DOI : 10.1006/exnr.2001.7678

M. Zabel and W. Kirsch, From development to dysfunction: Microglia and the complement cascade in CNS homeostasis, Ageing Research Reviews, vol.12, issue.3, pp.749-756, 2013.
DOI : 10.1016/j.arr.2013.02.001

K. Mosher and T. Wyss-coray, Microglial dysfunction in brain aging and Alzheimer's disease, Biochemical Pharmacology, vol.88, issue.4, pp.594-604, 2014.
DOI : 10.1016/j.bcp.2014.01.008

W. Streit and Q. Xue, Human CNS immune senescence and neurodegeneration, Current Opinion in Immunology, vol.29, pp.93-96, 2014.
DOI : 10.1016/j.coi.2014.05.005

L. Devi and M. Ohno, Genetic reductions of ????-site amyloid precursor protein-cleaving enzyme??????1 and amyloid-???? ameliorate impairment of conditioned taste aversion memory in 5XFAD Alzheimer??????s disease model mice, European Journal of Neuroscience, vol.27, issue.Suppl 2, pp.110-118, 2010.
DOI : 10.1111/j.1460-9568.2009.07031.x

L. Devi and M. Ohno, Mitochondrial dysfunction and accumulation of the ??-secretase-cleaved C-terminal fragment of APP in Alzheimer's disease transgenic mice, Neurobiology of Disease, vol.45, issue.1, pp.417-424, 2012.
DOI : 10.1016/j.nbd.2011.09.001

N. Terrando, C. Monaco, D. Ma, B. Foxwell, M. Feldmann et al., Tumor necrosis factor-?? triggers a cytokine cascade yielding postoperative cognitive decline, Proceedings of the National Academy of Sciences, vol.107, issue.47, pp.20518-20522, 2010.
DOI : 10.1073/pnas.1014557107

M. Cibelli, A. Fidalgo, N. Terrando, D. Ma, C. Monaco et al., Role of interleukin-1?? in postoperative cognitive dysfunction, Annals of Neurology, vol.410, issue.3, pp.360-368, 2010.
DOI : 10.1002/ana.22082

T. Frank-cannon, L. Alto, F. Mcalpine, and M. Tansey, Does neuroinflammation fan the flame in neurodegenerative diseases?, Molecular Neurodegeneration, vol.4, issue.1, p.47, 2009.
DOI : 10.1186/1750-1326-4-47

H. Kadhim, J. Duchateau, and G. Sebire, Cytokines and Brain Injury: Invited Review, Journal of Intensive Care Medicine, vol.25, issue.9, pp.236-249, 2008.
DOI : 10.1177/0885066608318458

M. Laird, J. Vender, and K. Dhandapani, Opposing Roles for Reactive Astrocytes following Traumatic Brain Injury, Neurosignals, vol.16, issue.2-3, pp.154-164, 2008.
DOI : 10.1159/000111560

M. Morganti-kossmann, L. Satgunaseelan, N. Bye, and T. Kossmann, Modulation of immune response by head injury, Injury, vol.38, issue.12, pp.1392-1400, 2007.
DOI : 10.1016/j.injury.2007.10.005

O. Schmidt, C. Heyde, W. Ertel, and P. Stahel, Closed head injury???an inflammatory disease?, Brain Research Reviews, vol.48, issue.2, pp.388-399, 2005.
DOI : 10.1016/j.brainresrev.2004.12.028

F. Bao, S. Shultz, J. Hepburn, V. Omana, L. Weaver et al., A CD11d Monoclonal Antibody Treatment Reduces Tissue Injury and Improves Neurological Outcome after Fluid Percussion Brain Injury in Rats, Journal of Neurotrauma, vol.29, issue.14, pp.2375-2392, 2012.
DOI : 10.1089/neu.2012.2408

M. Jana, C. Palencia, and K. Pahan, Fibrillar Amyloid-?? Peptides Activate Microglia via TLR2: Implications for Alzheimer's Disease, The Journal of Immunology, vol.181, issue.10, pp.7254-7262, 2008.
DOI : 10.4049/jimmunol.181.10.7254

A. Hillmann, S. Hahn, S. Schilling, T. Hoffmann, H. Demuth et al., No improvement after chronic ibuprofen treatment in the 5XFAD mouse model of Alzheimer's disease, Neurobiology of Aging, vol.33, issue.4, pp.833-839, 2012.
DOI : 10.1016/j.neurobiolaging.2011.08.006

P. Mcgeer, H. Akiyama, S. Itagaki, and E. Mcgeer, Activation of the classical complement pathway in brain tissue of Alzheimer patients, Neuroscience Letters, vol.107, issue.1-3, pp.341-346, 1989.
DOI : 10.1016/0304-3940(89)90843-4

M. Fonseca, S. Chu, A. Berci, M. Benoit, D. Peters et al., Contribution of complement activation pathways to neuropathology differs among mouse models of Alzheimer's disease, Journal of Neuroinflammation, vol.8, issue.1, p.4, 2011.
DOI : 10.1186/1742-2094-8-4

J. Daborg, U. Andreasson, M. Pekna, R. Lautner, E. Hanse et al., Cerebrospinal fluid levels of complement proteins C3, C4 and CR1 in Alzheimer???s disease, Journal of Neural Transmission, vol.154, issue.3, pp.789-797, 2012.
DOI : 10.1007/s00702-012-0797-8

L. Bergamaschini, S. Canziani, B. Bottasso, M. Cugno, P. Braidotti et al., Alzheimer's beta-amyloid peptides can activate the early components of complement classical pathway in a C1q-independent manner, Clinical and Experimental Immunology, vol.121, issue.3, pp.526-533, 1999.
DOI : 10.1038/380168a0

L. Bergamaschini, C. Donarini, G. Gobbo, L. Parnetti, and V. Gallai, Activation of complement and contact system in Alzheimer's disease, Mechanisms of Ageing and Development, vol.122, issue.16, pp.1971-1983, 2001.
DOI : 10.1016/S0047-6374(01)00311-6

A. Kulkarni, L. Kellaway, D. Lahiri, and G. Kotwal, Neuroprotection from Complement-Mediated Inflammatory Damage, Annals of the New York Academy of Sciences, vol.1035, issue.1, pp.147-164, 2004.
DOI : 10.1196/annals.1332.010

H. Zanjani, C. Finch, C. Kemper, J. Atkinson, D. Mckeel et al., Complement Activation in Very Early Alzheimer Disease, Alzheimer Disease & Associated Disorders, vol.19, issue.2, pp.55-66, 2005.
DOI : 10.1097/01.wad.0000165506.60370.94

URL : https://hal.archives-ouvertes.fr/hal-00077828

H. Crehan, J. Hardy, and J. Pocock, Microglia, Alzheimer's Disease, and Complement, International Journal of Alzheimer's Disease, vol.60, issue.6, p.983640, 2012.
DOI : 10.1111/j.1471-4159.2007.05012.x

T. Togo, H. Akiyama, E. Iseki, H. Kondo, K. Ikeda et al., Occurrence of T cells in the brain of Alzheimer's disease and other neurological diseases, Journal of Neuroimmunology, vol.124, issue.1-2, pp.83-92, 2002.
DOI : 10.1016/S0165-5728(01)00496-9

T. Town, J. Tan, and R. Flavell, T-Cells in Alzheimer's Disease, NeuroMolecular Medicine, vol.7, issue.3, pp.255-264, 2005.
DOI : 10.1385/NMM:7:3:255

M. Rodrigues, P. Sanberg, L. Cruz, and S. Garbuzova-davis, The innate and adaptive immunological aspects in neurodegenerative diseases, Journal of Neuroimmunology, vol.269, issue.1-2, pp.1-8, 2014.
DOI : 10.1016/j.jneuroim.2013.09.020

F. Baglio, M. Saresella, M. Preti, M. Cabinio, L. Griffanti et al., Neuroinflammation and Brain Functional Disconnection in Alzheimer???s Disease, Frontiers in Aging Neuroscience, vol.5, p.81, 2013.
DOI : 10.3389/fnagi.2013.00081

Y. Shen, L. Yang, and R. Li, What does complement do in Alzheimer???s disease? Old molecules with new insights, Translational Neurodegeneration, vol.2, issue.1, p.21, 2013.
DOI : 10.1186/2047-9158-2-21

R. Veerhuis, Histological and Direct Evidence for the Role of Complement in the Neuroinflammation of AD, Current Alzheimer Research, vol.8, issue.1, pp.34-58, 2011.
DOI : 10.2174/156720511794604589

D. Eyles, L. Almeras, P. Benech, A. Patatian, A. Mackay-sim et al., Developmental vitamin D deficiency alters the expression of genes encoding mitochondrial, cytoskeletal and synaptic proteins in the adult rat brain, The Journal of Steroid Biochemistry and Molecular Biology, vol.103, issue.3-5, pp.538-545, 2007.
DOI : 10.1016/j.jsbmb.2006.12.096

URL : https://hal.archives-ouvertes.fr/hal-00320753

E. Barrey, E. Mucher, N. Jeansoule, T. Larcher, L. Guigand et al., Gene expression profiling in equine polysaccharide storage myopathy revealed inflammation, glycogenesis inhibition, hypoxia and mitochondrial dysfunctions, BMC Veterinary Research, vol.5, issue.1, p.29, 2009.
DOI : 10.1186/1746-6148-5-29

URL : https://hal.archives-ouvertes.fr/inserm-00663617

B. Terrier, F. Joly, T. Vazquez, P. Benech, M. Rosenzwajg et al., Expansion of Functionally Anergic CD21-/low Marginal Zone-like B Cell Clones in Hepatitis C Virus Infection-Related Autoimmunity, The Journal of Immunology, vol.187, issue.12, pp.6550-6563, 2011.
DOI : 10.4049/jimmunol.1102022

E. Barrey, L. Jayr, E. Mucher, S. Gospodnetic, F. Joly et al., Transcriptome analysis of muscle in horses suffering from recurrent exertional rhabdomyolysis revealed energetic pathway alterations and disruption in the cytosolic calcium regulation, Animal Genetics, vol.61, issue.Suppl. 2
DOI : 10.1111/j.1365-2052.2011.02246.x

URL : https://hal.archives-ouvertes.fr/hal-00973744

L. Mille-hamard, V. Billat, E. Henry, B. Bonnamy, F. Joly et al., Skeletal muscle alterations and exercise performance decrease in erythropoietin-deficient mice: a comparative study, BMC Medical Genomics, vol.100, issue.7, p.29, 2012.
DOI : 10.1182/blood-2002-01-0124

URL : https://hal.archives-ouvertes.fr/inserm-00742677

L. Almeras, D. Eyles, P. Benech, D. Laffite, C. Villard et al., Developmental vitamin D deficiency alters brain protein expression in the adult rat: Implications for neuropsychiatric disorders, PROTEOMICS, vol.23, issue.90, pp.769-780, 2007.
DOI : 10.1002/pmic.200600392

URL : https://hal.archives-ouvertes.fr/hal-00320755

J. Kawanokuchi, T. Mizuno, H. Takeuchi, H. Kato, J. Wang et al., Production of interferon-?? by microglia, Multiple Sclerosis Journal, vol.156, issue.5, pp.558-564, 2006.
DOI : 10.1177/1352458506070763

P. Chakrabarty, C. Ceballos-diaz, A. Beccard, C. Janus, D. Dickson et al., IFN-?? Promotes Complement Expression and Attenuates Amyloid Plaque Deposition in Amyloid ?? Precursor Protein Transgenic Mice, The Journal of Immunology, vol.184, issue.9, pp.5333-5343, 2010.
DOI : 10.4049/jimmunol.0903382

J. Zhang, K. Ke, Z. Liu, Y. Qiu, and Y. Peng, Th17 Cell-Mediated Neuroinflammation Is Involved in Neurodegeneration of A??1-42-Induced Alzheimer???s Disease Model Rats, PLoS ONE, vol.23, issue.10, p.75786, 2013.
DOI : 10.1371/journal.pone.0075786.g006

M. Lynch, The impact of neuroimmune changes on development of amyloid pathology; relevance to Alzheimer's disease, Immunology, vol.204, issue.Pt 11, pp.292-301, 2013.
DOI : 10.1111/imm.12156

S. Kook, H. Hong, M. Moon, C. Ha, S. Chang et al., A??1-42-RAGE Interaction Disrupts Tight Junctions of the Blood-Brain Barrier Via Ca2+-Calcineurin Signaling, Journal of Neuroscience, vol.32, issue.26, pp.8845-8854, 2012.
DOI : 10.1523/JNEUROSCI.6102-11.2012

T. Browne, K. Mcquillan, R. Mcmanus, O. Reilly, J. Mills et al., IFN-?? Production by Amyloid ??-Specific Th1 Cells Promotes Microglial Activation and Increases Plaque Burden in a Mouse Model of Alzheimer's Disease, The Journal of Immunology, vol.190, issue.5, pp.2241-2251, 2013.
DOI : 10.4049/jimmunol.1200947

O. Keefe, G. Nguyen, V. Benveniste, and E. , Regulation and Function of Class II Major Histocompatibility Complex, CD40, and B7 Expression in Macrophages and Microglia: Implications in Neurological Diseases, Journal of Neurovirology, vol.8, issue.6, pp.496-512, 2002.
DOI : 10.1080/13550280290100941

I. Tooyama, H. Kimura, H. Akiyama, and P. Mcgeer, Reactive microglia express class I and class II major histocompatibility complex antigens in Alzheimer's disease, Brain Research, vol.523, issue.2, pp.273-280, 1990.
DOI : 10.1016/0006-8993(90)91496-4

K. Bryan, X. Zhu, P. Harris, G. Perry, R. Castellani et al., Expression of CD74 is increased in neurofibrillary tangles in Alzheimer's disease, Molecular Neurodegeneration, vol.3, issue.1, p.13, 2008.
DOI : 10.1186/1750-1326-3-13

Y. Gore, D. Starlets, N. Maharshak, S. Becker-herman, U. Kaneyuki et al., Macrophage Migration Inhibitory Factor Induces B Cell Survival by Activation of a CD74-CD44 Receptor Complex, Journal of Biological Chemistry, vol.283, issue.5, pp.2784-2792, 2008.
DOI : 10.1074/jbc.M703265200

S. Matsuda, Y. Matsuda, and D. , CD74 interacts with APP and suppresses the production of A??, Molecular Neurodegeneration, vol.4, issue.1, p.41, 2009.
DOI : 10.1186/1750-1326-4-41

C. Bekpen, R. Xavier, and E. Eichler, Human IRGM gene ???to be or not to be???, Seminars in Immunopathology, vol.40, issue.7, pp.437-444, 2010.
DOI : 10.1007/s00281-010-0224-x

G. Taylor, C. Feng, and A. Sher, p47 GTPases: regulators of immunity to intracellular pathogens, Nature Reviews Immunology, vol.84, issue.2, pp.47100-109, 2004.
DOI : 10.1146/annurev.biochem.63.1.949

S. He, C. Wang, H. Dong, F. Xia, H. Zhou et al., Immune-related GTPase M (IRGM1) regulates neuronal autophagy in a mouse model of stroke, Autophagy, vol.96, issue.11, pp.1621-1627, 2012.
DOI : 10.1016/j.neulet.2008.08.077

C. Wang, C. Wang, H. Dong, X. Wu, C. Wang et al., Immune-related GTPase Irgm1 exacerbates experimental auto-immune encephalomyelitis by promoting the disruption of blood???brain barrier and blood???cerebrospinal fluid barrier, Molecular Immunology, vol.53, issue.1-2, pp.43-51, 2013.
DOI : 10.1016/j.molimm.2012.06.009

C. Feng, D. Weksberg, G. Taylor, A. Sher, and M. Goodell, The p47 GTPase Lrg-47 (Irgm1) Links Host Defense and Hematopoietic Stem Cell Proliferation, Cell Stem Cell, vol.2, issue.1, pp.83-89, 2008.
DOI : 10.1016/j.stem.2007.10.007

Y. Zhao, A. Khaminets, J. Hunn, and J. Howard, Disruption of the Toxoplasma gondii Parasitophorous Vacuole by IFN??-Inducible Immunity-Related GTPases (IRG Proteins) Triggers Necrotic Cell Death, PLoS Pathogens, vol.47, issue.2, p.1000288, 2009.
DOI : 10.1371/journal.ppat.1000288.s017

H. Xu, Z. Wu, F. Fang, L. Guo, D. Chen et al., Genetic deficiency of Irgm1 (LRG-47) suppresses induction of experimental autoimmune encephalomyelitis by promoting apoptosis of activated CD4+ T cells, The FASEB Journal, vol.24, issue.5, pp.1583-1592, 2010.
DOI : 10.1096/fj.09-137323

S. Henry, X. Daniell, A. Burroughs, M. Indaram, D. Howell et al., Balance of Irgm protein activities determines IFN-??-induced host defense, Journal of Leukocyte Biology, vol.85, issue.5, pp.877-885, 2009.
DOI : 10.1189/jlb.1008599

J. Hunn and J. Howard, The Mouse Resistance Protein Irgm1 (LRG-47): A Regulator or an Effector of Pathogen Defense?, PLoS Pathogens, vol.10, issue.7, p.1001008, 2010.
DOI : 10.1371/journal.ppat.1001008.t001

M. Sardiello, M. Palmieri, A. Di-ronza, D. Medina, M. Valenza et al., A Gene Network Regulating Lysosomal Biogenesis and Function, Science, vol.325, pp.473-477, 2009.
DOI : 10.1126/science.1174447

C. Settembre, D. Malta, C. Polito, V. , G. Arencibia et al., TFEB Links Autophagy to Lysosomal Biogenesis, Science, vol.332, issue.6036, pp.1429-1433, 2011.
DOI : 10.1126/science.1204592

X. Zhang, K. Garbett, K. Veeraraghavalu, B. Wilburn, R. Gilmore et al., A Role for Presenilins in Autophagy Revisited: Normal Acidification of Lysosomes in Cells Lacking PSEN1 and PSEN2, Journal of Neuroscience, vol.32, issue.25, pp.8633-8648, 2012.
DOI : 10.1523/JNEUROSCI.0556-12.2012

Y. Li, C. Xu, and D. Schubert, The up-regulation of endosomal-lysosomal components in amyloid beta-resistant cells, J Neurochem, vol.73, pp.1477-1482, 1999.

S. Pasternak, J. Callahan, and D. Mahuran, The role of the endosomal/ lysosomal system in amyloid-beta production and the pathophysiology of Alzheimer's disease: Reexamining the spatial paradox from a lysosomal perspective, Journal of Alzheimer's Disease, vol.6, issue.1, pp.53-65, 2004.
DOI : 10.3233/JAD-2004-6107

P. Kandalepas, K. Sadleir, W. Eimer, J. Zhao, D. Nicholson et al., The Alzheimer???s ??-secretase BACE1 localizes to normal presynaptic terminals and to dystrophic presynaptic terminals surrounding amyloid plaques, Acta Neuropathologica, vol.287, issue.31, pp.329-352, 2013.
DOI : 10.1007/s00401-013-1152-3

L. Avrahami, D. Farfara, M. Shaham-kol, R. Vassar, D. Frenkel et al., Inhibition of Glycogen Synthase Kinase-3 Ameliorates ??-Amyloid Pathology and Restores Lysosomal Acidification and Mammalian Target of Rapamycin Activity in the Alzheimer Disease Mouse Model: IN VIVO AND IN VITRO STUDIES, Journal of Biological Chemistry, vol.288, issue.2, pp.1295-1306, 2013.
DOI : 10.1074/jbc.M112.409250

R. Nixon, A. Cataldo, and P. Mathews, The endosomal-lysosomal system of neurons in Alzheimer's disease pathogenesis: a review, Neurochemical Research, vol.25, issue.9/10, pp.1161-1172, 2000.
DOI : 10.1023/A:1007675508413

S. Gobin, A. Peijnenburg, V. Keijsers, and P. Van-den-elsen, Site ?? Is Crucial for Two Routes of IFN??-Induced MHC Class I Transactivation: The ISRE-Mediated Route and a Novel Pathway Involving CIITA, Immunity, vol.6, issue.5, pp.601-611, 1997.
DOI : 10.1016/S1074-7613(00)80348-9

A. Muhlethaler-mottet, D. Berardino, W. Otten, L. Mach, and B. , Activation of the MHC Class II Transactivator CIITA by Interferon-?? Requires Cooperative Interaction between Stat1 and USF-1, Immunity, vol.8, issue.2, pp.157-166, 1998.
DOI : 10.1016/S1074-7613(00)80468-9

P. Driggers, D. Ennist, S. Gleason, W. Mak, M. Marks et al., An interferon gamma-regulated protein that binds the interferon-inducible enhancer element of major histocompatibility complex class I genes., Proceedings of the National Academy of Sciences, vol.87, issue.10, pp.3743-3747, 1990.
DOI : 10.1073/pnas.87.10.3743

A. Weisz, S. Kirchhoff, and B. Levi, IFN consensus sequence binding protein (ICSBP) is a conditional repressor of IFN inducible promoters, Int Immunol, vol.6, pp.1125-1131, 1994.

C. Perez, J. Wietzerbin, and P. Benech, Two cis-DNA elements involved in myeloid-cell-specific expression and gamma interferon (IFN-gamma) activation of the human high-affinity Fc gamma receptor gene: a novel IFN regulatory mechanism., Molecular and Cellular Biology, vol.13, issue.4, pp.2182-2192, 1993.
DOI : 10.1128/MCB.13.4.2182

T. Masuda, M. Tsuda, R. Yoshinaga, H. Tozaki-saitoh, K. Ozato et al., IRF8 Is a Critical Transcription Factor for Transforming Microglia into a Reactive Phenotype, Cell Reports, vol.1, issue.4, pp.334-340, 2012.
DOI : 10.1016/j.celrep.2012.02.014

T. Tamura, H. Yanai, D. Savitsky, and T. Taniguchi, The IRF Family Transcription Factors in Immunity and Oncogenesis, Annual Review of Immunology, vol.26, issue.1, pp.535-584, 2008.
DOI : 10.1146/annurev.immunol.26.021607.090400

H. Wang and H. Morse, IRF8 regulates myeloid and B lymphoid lineage diversification, Immunologic Research, vol.177, issue.1-3, pp.109-117, 2009.
DOI : 10.1007/s12026-008-8055-8

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2803682

J. Marquis, O. Kapoustina, D. Langlais, R. R. Dufour, C. Kim et al., Interferon Regulatory Factor 8 Regulates Pathways for Antigen Presentation in Myeloid Cells and during Tuberculosis, PLoS Genetics, vol.3, issue.6, p.1002097, 2011.
DOI : 10.1371/journal.pgen.1002097.s010

J. Berghout, D. Langlais, I. Radovanovic, M. Tam, J. Macmicking et al., Irf8-Regulated Genomic Responses Drive Pathological Inflammation during Cerebral Malaria, PLoS Pathogens, vol.10, issue.7, p.100349133
DOI : 10.1371/journal.ppat.1003491.s006

URL : http://doi.org/10.1371/journal.ppat.1003491

X. Ju, D. Ruau, P. Jantti, K. Sere, C. Becker et al., Transforming growth factor ??1 up-regulates interferon regulatory factor 8 during dendritic cell development, European Journal of Immunology, vol.5, issue.5, pp.1174-1183, 2007.
DOI : 10.1002/eji.200636504

A. Suzumura, M. Sawada, H. Yamamoto, and T. Marunouchi, Transforming growth factor-beta suppresses activation and proliferation of microglia in vitro, J Immunol, vol.151, pp.2150-2158, 1993.

K. Frei, H. Lins, C. Schwerdel, and A. Fontana, Antigen presentation in the central nervous system. The inhibitory effect of IL-10 on MHC class II expression and production of cytokines depends on the inducing signals and the type of cell analyzed, J Immunol, vol.152, pp.2720-2728, 1994.

L. Qin and F. Crews, NADPH oxidase and reactive oxygen species contribute to alcohol-induced microglial activation and neurodegeneration, Journal of Neuroinflammation, vol.103, issue.Suppl 1
DOI : 10.1186/1742-2094-9-5

L. Qin, Y. Liu, J. Hong, and F. Crews, NADPH oxidase and aging drive microglial activation, oxidative stress, and dopaminergic neurodegeneration following systemic LPS administration, Glia, vol.46, issue.Suppl 1, pp.855-868, 2013.
DOI : 10.1002/glia.22479

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3631289

D. Pratico, K. Uryu, S. Leight, J. Trojanoswki, and V. Lee, Increased lipid peroxidation precedes amyloid plaque formation in an animal model of Alzheimer amyloidosis, J Neurosci, vol.21, pp.4183-4187, 2001.

H. Xie, J. Guan, L. Borrelli, J. Xu, A. Serrano-pozo et al., Mitochondrial Alterations near Amyloid Plaques in an Alzheimer's Disease Mouse Model, Journal of Neuroscience, vol.33, issue.43, pp.17042-17051, 2013.
DOI : 10.1523/JNEUROSCI.1836-13.2013

I. Hong, T. Kang, Y. Yoo, R. Park, J. Lee et al., Quantitative proteomic a nalysis of the hippocampus in the 5XFAD mouse model at early stages of Alzheimer's disease pathology, J Alzheimers Dis, vol.36, pp.321-334, 2013.

P. Errante, J. Frazao, and A. Condino-neto, The use of interferon-gamma therapy in chronic granulomatous disease. Recent Patents Anti-infective drug Dis, pp.225-230, 2008.

A. Manea, L. Tanase, M. Raicu, and M. Simionescu, JAK/STAT Signaling Pathway Regulates Nox1 and Nox4-Based NADPH Oxidase in Human Aortic Smooth Muscle Cells, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.30, issue.1, pp.105-112, 2010.
DOI : 10.1161/ATVBAHA.109.193896

L. Marchi, R. Sesti-costa, M. Ignacchiti, S. Chedraoui-silva, and B. Mantovani, In vitro activation of mouse neutrophils by recombinant human interferon-gamma: Increased phagocytosis and release of reactive oxygen species and pro-inflammatory cytokines, International Immunopharmacology, vol.18, issue.2, pp.228-235, 2014.
DOI : 10.1016/j.intimp.2013.12.010

J. Matute, A. Arias, M. Dinauer, and P. Patino, p40phox: The last NADPH oxidase subunit, Blood Cells, Molecules, and Diseases, vol.35, issue.2, pp.291-302, 2005.
DOI : 10.1016/j.bcmd.2005.06.010

W. Tian, X. Li, N. Stull, M. W. Suh, C. Bissonnette et al., Fc??R-stimulated activation of the NADPH oxidase: phosphoinositide-binding protein p40phox regulates NADPH oxidase activity after enzyme assembly on the phagosome, Blood, vol.112, issue.9, pp.3867-3877, 2008.
DOI : 10.1182/blood-2007-11-126029

A. Utomo, X. Cullere, M. Glogauer, W. Swat, and T. Mayadas, Vav Proteins in Neutrophils Are Required for Fc??R-Mediated Signaling to Rac GTPases and Nicotinamide Adenine Dinucleotide Phosphate Oxidase Component p40(phox), The Journal of Immunology, vol.177, issue.9, pp.6388-6397, 2006.
DOI : 10.4049/jimmunol.177.9.6388

S. Shimohama, H. Tanino, N. Kawakami, N. Okamura, H. Kodama et al., Activation of NADPH Oxidase in Alzheimer's Disease Brains, Biochemical and Biophysical Research Communications, vol.273, issue.1, pp.5-9, 2000.
DOI : 10.1006/bbrc.2000.2897

A. Abramov, L. Canevari, and M. Duchen, ??-Amyloid Peptides Induce Mitochondrial Dysfunction and Oxidative Stress in Astrocytes and Death of Neurons through Activation of NADPH Oxidase, Journal of Neuroscience, vol.24, issue.2, pp.565-575, 2004.
DOI : 10.1523/JNEUROSCI.4042-03.2004

E. Ponomarev, L. Shriver, and B. Dittel, CD40 Expression by Microglial Cells Is Required for Their Completion of a Two-Step Activation Process during Central Nervous System Autoimmune Inflammation, The Journal of Immunology, vol.176, issue.3, pp.1402-1410, 2006.
DOI : 10.4049/jimmunol.176.3.1402

M. Wojtera, T. Sobow, I. Kloszewska, P. Liberski, D. Brown et al., Expression of immunohistochemical markers on microglia in Creutzfeldt- Jakob disease and Alzheimer's disease: morphometric study and review of the literature, Folia Neuropathol, vol.50, pp.74-84, 2012.

F. Walker, M. Nilsson, and K. Jones, Acute and Chronic Stress-Induced Disturbances of Microglial Plasticity, Phenotype and Function, Current Drug Targets, vol.14, issue.11, pp.1262-1276, 2013.
DOI : 10.2174/13894501113149990208

N. Peress, H. Fleit, E. Perillo, R. Kuljis, and C. Pezzullo, Identification of Fc??RI, II and III on normal human brain ramified microglia and on microglia in senile plaques in Alzheimer's disease, Journal of Neuroimmunology, vol.48, issue.1, pp.71-79, 1993.
DOI : 10.1016/0165-5728(93)90060-C

O. Dorseuil, L. Reibel, G. Bokoch, J. Camonis, and G. Gacon, The Rac target NADPH oxidase p67phox interacts preferentially with Rac2 rather than Rac1, J Biol Chem, vol.271, pp.83-88, 1996.

O. Dorseuil, A. Vazquez, P. Lang, J. Bertoglio, G. Gacon et al., Inhibition of superoxide production in B lymphocytes by rac antisense oligonucleotides, J Biol Chem, vol.267, pp.20540-20542, 1992.

J. Rogers and L. Lue, Microglial chemotaxis, activation, and phagocytosis of amyloid ??-peptide as linked phenomena in Alzheimer's disease, Neurochemistry International, vol.39, issue.5-6, pp.333-340, 2001.
DOI : 10.1016/S0197-0186(01)00040-7

M. Fiala, J. Lin, J. Ringman, V. Kermani-arab, G. Tsao et al., Ineffective phagocytosis of amyloid-?? by macrophages of Alzheimer's disease patients, Journal of Alzheimer's Disease, vol.7, issue.3, pp.221-232, 2005.
DOI : 10.3233/JAD-2005-7304

J. Koenigsknecht and G. Landreth, Microglial Phagocytosis of Fibrillar ??-Amyloid through a ??1 Integrin-Dependent Mechanism, Journal of Neuroscience, vol.24, issue.44, pp.9838-9846, 2004.
DOI : 10.1523/JNEUROSCI.2557-04.2004

Y. Liu, S. Walter, M. Stagi, D. Cherny, M. Letiembre et al., LPS receptor (CD14): a receptor for phagocytosis of Alzheimer's amyloid peptide, Brain, vol.128, issue.8, pp.1778-1789, 2005.
DOI : 10.1093/brain/awh531

J. Luo, F. Elwood, M. Britschgi, S. Villeda, H. Zhang et al., Colony-stimulating factor 1 receptor (CSF1R) signaling in injured neurons facilitates protection and survival, The Journal of Experimental Medicine, vol.1, issue.1, pp.157-172, 2013.
DOI : 10.1016/j.neulet.2004.06.020

H. Neumann and M. Daly, as Risk Factor for Alzheimer's Disease, New England Journal of Medicine, vol.368, issue.2, pp.182-184, 2013.
DOI : 10.1056/NEJMe1213157

R. Guerreiro, A. Wojtas, J. Bras, M. Carrasquillo, E. Rogaeva et al., variants in Alzheimer's disease, N Engl J Med, vol.368, pp.2117-127, 2013.

T. Jonsson, H. Stefansson, S. Steinberg, I. Jonsdottir, P. Jonsson et al., Associated with the Risk of Alzheimer's Disease, New England Journal of Medicine, vol.368, issue.2, pp.107-116, 2013.
DOI : 10.1056/NEJMoa1211103

K. Takahashi, M. Prinz, M. Stagi, O. Chechneva, and H. Neumann, TREM2-Transduced Myeloid Precursors Mediate Nervous Tissue Debris Clearance and Facilitate Recovery in an Animal Model of Multiple Sclerosis, PLoS Medicine, vol.436, issue.4, p.124, 2007.
DOI : 10.1371/journal.pmed.0040124.st003

L. Piccio, C. Buonsanti, M. Mariani, M. Cella, S. Gilfillan et al., Blockade of TREM-2 exacerbates experimental autoimmune encephalomyelitis, European Journal of Immunology, vol.164, issue.5, pp.1290-1301, 2007.
DOI : 10.1002/eji.200636837

S. Frank, G. Burbach, M. Bonin, M. Walter, W. Streit et al., TREM2 is upregulated in amyloid plaque-associated microglia in aged APP23 transgenic mice, Glia, vol.177, issue.13, pp.1438-1447, 2008.
DOI : 10.1002/glia.20710

J. Hamerman, N. Tchao, C. Lowell, and L. Lanier, Enhanced Toll-like receptor responses in the absence of signaling adaptor DAP12, Nature Immunology, vol.19, issue.6, pp.579-586, 2005.
DOI : 10.1016/S0022-1759(98)00204-X

J. Hamerman, J. Jarjoura, M. Humphrey, M. Nakamura, W. Seaman et al., Cutting Edge: Inhibition of TLR and FcR Responses in Macrophages by Triggering Receptor Expressed on Myeloid Cells (TREM)-2 and DAP12, The Journal of Immunology, vol.177, issue.4, pp.2051-2055, 2006.
DOI : 10.4049/jimmunol.177.4.2051

E. Vardy, P. Rice, P. Bowie, J. Holmes, P. Grant et al., Increased Circulating Insulin-like Growth Factor-1 in Late-onset Alzheimer's Disease, Journal of Alzheimer's Disease, vol.12, issue.4, pp.285-290, 2007.
DOI : 10.3233/JAD-2007-12401

S. Freude, K. Schilbach, and M. Schubert, The Role of IGF-1 Receptor and Insulin Receptor Signaling for the Pathogenesis of Alzheimers Disease: From Model Organisms to Human Disease, Current Alzheimer Research, vol.6, issue.3, pp.213-223, 2009.
DOI : 10.2174/156720509788486527

Y. Pang, B. Zheng, L. Campbell, L. Fan, Z. Cai et al., IGF-1 Can Either Protect Against or Increase LPS-Induced Damage in the Developing Rat Brain, Pediatric Research, vol.51, issue.6, pp.579-584, 2010.
DOI : 10.1203/PDR.0b013e3181dc240f

B. Ryu, H. Ko, I. Jou, J. Noh, and B. Gwag, Phosphatidylinositol 3-kinase-mediated regulation of neuronal apoptosis and necrosis by insulin and IGF-I, Journal of Neurobiology, vol.65, issue.4, pp.536-546, 1999.
DOI : 10.1002/(SICI)1097-4695(19990615)39:4<536::AID-NEU7>3.0.CO;2-J

D. Davila and I. Torres-aleman, Neuronal Death by Oxidative Stress Involves Activation of FOXO3 through a Two-Arm Pathway That Activates Stress Kinases and Attenuates Insulin-like Growth Factor I Signaling, Molecular Biology of the Cell, vol.19, issue.5, pp.2014-2025, 2008.
DOI : 10.1091/mbc.E07-08-0811

S. Madathil, S. Carlson, J. Brelsfoard, P. Ye, D. Ercole et al., Astrocyte-Specific Overexpression of Insulin-Like Growth Factor-1

P. Repovic and E. Benveniste, Prostaglandin E2 is a novel inducer of oncostatin-M expression in macrophages and microglia, J Neurosci, vol.22, pp.5334-5343, 2002.

T. Weiss, A. Samson, B. Niego, P. Daniel, and R. Medcalf, Oncostatin M is a neuroprotective cytokine that inhibits excitotoxic injury in vitro and in vivo, The FASEB Journal, vol.20, issue.13, pp.2369-2371, 2006.
DOI : 10.1096/fj.06-5850fje

K. Ganesh, A. Das, R. Dickerson, S. Khanna, N. Parinandi et al., Prostaglandin E2 Induces Oncostatin M Expression in Human Chronic Wound Macrophages through Axl Receptor Tyrosine Kinase Pathway, The Journal of Immunology, vol.189, issue.5, pp.2563-2573, 2012.
DOI : 10.4049/jimmunol.1102762

K. Park, S. Nozell, and E. Benveniste, Protective Role of STAT3 in NMDA and Glutamate-Induced Neuronal Death: Negative Regulatory Effect of SOCS3, PLoS ONE, vol.103, issue.11, p.50874, 2012.
DOI : 10.1371/journal.pone.0050874.s002

K. Sleegers, N. Brouwers, and C. Van-broeckhoven, Role of progranulin as a biomarker for Alzheimer???s disease, Biomarkers in Medicine, vol.4, issue.1, pp.37-50, 2010.
DOI : 10.2217/bmm.09.82

W. Tang, Y. Lu, Q. Tian, Y. Zhang, F. Guo et al., The Growth Factor Progranulin Binds to TNF Receptors and Is Therapeutic Against Inflammatory Arthritis in Mice, Science, vol.332, issue.6028, pp.478-484, 2011.
DOI : 10.1126/science.1199214

J. Zhu, C. Nathan, J. W. Sim, D. Ashcroft, G. Wahl et al., Conversion of Proepithelin to Epithelins, Cell, vol.111, issue.6, pp.867-878, 2002.
DOI : 10.1016/S0092-8674(02)01141-8

H. Okura, S. Yamashita, T. Ohama, A. Saga, A. Yamamoto-kakuta et al., HDL/Apolipoprotein A-I Binds to Macrophage-Derived Progranulin and Suppresses its Conversion into Proinflammatory Granulins, Journal of Atherosclerosis and Thrombosis, vol.17, issue.6, pp.568-577, 2010.
DOI : 10.5551/jat.3921

S. Bhattacharya, C. Haertel, A. Maelicke, and D. Montag, Galantamine Slows Down Plaque Formation and Behavioral Decline in the 5XFAD Mouse Model of Alzheimer???s Disease, PLoS ONE, vol.40, issue.2, p.89454, 2014.
DOI : 10.1371/journal.pone.0089454.g007