V. Ablamunits, O. Henegariu, J. Hansen, L. Opare-addo, P. Preston-hurlburt et al., Synergistic reversal of type 1 diabetes in NOD mice with anti-CD3 and interleukin-1, 2012.

B. Amulic, C. Cazalet, G. Hayes, K. Metzler, and A. Zychlinsky, Neutrophil Function: From Mechanisms to Disease, Annual Review of Immunology, vol.30, issue.1, pp.459-489, 2012.
DOI : 10.1146/annurev-immunol-020711-074942

M. Atkinson, J. Bluestone, G. Eisenbarth, M. Hebrok, K. Herold et al., How Does Type 1 Diabetes Develop?: The Notion of Homicide or ??-Cell Suicide Revisited, Diabetes, vol.60, issue.5, pp.1370-1379, 2011.
DOI : 10.2337/db10-1797

M. Atkinson, G. Eisenbarth, and A. Michels, Type 1 diabetes, The Lancet, vol.383, issue.9911, pp.69-82, 2014.
DOI : 10.1016/S0140-6736(13)60591-7

P. Baugher and R. A. , The Carboxyl-terminal PDZ Ligand Motif of Chemokine Receptor CXCR2 Modulates Post-endocytic Sorting and Cellular Chemotaxis, Journal of Biological Chemistry, vol.283, issue.45, pp.30868-30878, 2008.
DOI : 10.1074/jbc.M804054200

T. Bock, A. Kyhnel, B. Pakkenberg, and K. Buschard, The postnatal growth of the beta-cell mass in pigs, Journal of Endocrinology, vol.179, issue.2, pp.245-252, 2003.
DOI : 10.1677/joe.0.1790245

M. Boni-schnetzler, S. Boller, S. Debray, K. Bouzakri, D. Meier et al., Free Fatty Acids Induce a Proinflammatory Response in Islets via the Abundantly Expressed Interleukin-1 Receptor I, Endocrinology, vol.150, issue.12, pp.5218-5229, 2009.
DOI : 10.1210/en.2009-0543

E. Bradshaw, K. Raddassi, W. Elyaman, T. Orban, P. Gottlieb et al., Monocyte chemoattractant protein-1 is expressed in pancreatic islets from prediabetic NOD mice and in interleukin-1 beta-exposed human and rat islet cells, Diabetologia, vol.44, pp.325-332, 2001.

M. Chen, B. Lam, Y. Kanaoka, P. Nigrovic, L. Audoly et al., is required for inflammatory arthritis, The Journal of Experimental Medicine, vol.71, issue.4, pp.837-842, 2006.
DOI : 10.1016/S0002-9440(10)63016-7

R. Chou, N. Kim, C. Sadik, E. Seung, Y. Lan et al., Lipid-Cytokine-Chemokine Cascade Drives Neutrophil Recruitment in a Murine Model of Inflammatory Arthritis, Immunity, vol.33, issue.2, pp.266-278, 2010.
DOI : 10.1016/j.immuni.2010.07.018

A. Citro, E. Cantarelli, P. Maffi, R. Nano, R. Melzi et al., CXCR1/2 inhibition enhances pancreatic islet survival after transplantation, Journal of Clinical Investigation, vol.122, issue.10, pp.3647-3651, 2012.
DOI : 10.1172/JCI63089DS1

E. Dahlen, K. Dawe, L. Ohlsson, and G. Hedlund, Dendritic cells and macrophages are the first and major producers of TNF-alpha in pancreatic islets in the nonobese diabetic mouse, J Immunol, vol.160, pp.3585-3593, 1998.

Y. De, Q. Chen, A. Schmidt, G. Anderson, J. Wang et al., LL-37, the neutrophil granule-and epithelial cell-derived cathelicidin, utilizes formyl peptide receptor-like 1 (FPRL1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells, J Exp Med, vol.192, pp.1069-1074, 2000.

S. Devaraj, N. Glaser, S. Griffen, J. Wang-polagruto, E. Miguelino et al., Increased Monocytic Activity and Biomarkers of Inflammation in Patients With Type 1 Diabetes, Diabetes, vol.55, issue.3, pp.774-779, 2006.
DOI : 10.2337/diabetes.55.03.06.db05-1417

J. Diana, Y. Simoni, L. Furio, L. Beaudoin, B. Agerberth et al., Crosstalk between neutrophils, B-1a cells and plasmacytoid dendritic cells initiates autoimmune diabetes, Nature Medicine, vol.169, issue.1, pp.65-73, 2013.
DOI : 10.1093/intimm/7.5.877

K. Eash, J. Means, D. White, and D. Link, CXCR4 is a key regulator of neutrophil release from the bone marrow under basal and stress granulopoiesis conditions, Blood, vol.113, issue.19, pp.4711-4719, 2009.
DOI : 10.1182/blood-2008-09-177287

K. Eash, A. Greenbaum, P. Gopalan, and D. Link, CXCR2 and CXCR4 antagonistically regulate neutrophil trafficking from murine bone marrow, Journal of Clinical Investigation, vol.120, issue.7, 2010.
DOI : 10.1172/JCI41649DS1

J. Ehses, G. Lacraz, M. Giroix, F. Schmidlin, J. Coulaud et al., IL-1 antagonism reduces hyperglycemia and tissue inflammation in the type 2 diabetic GK rat, Proceedings of the National Academy of Sciences, vol.106, issue.33, pp.13998-14003, 2009.
DOI : 10.1073/pnas.0810087106

D. Eizirik, M. Colli, and F. Ortis, The role of inflammation in insulitis and ??-cell loss in type 1 diabetes, Nature Reviews Endocrinology, vol.134, issue.4, pp.219-226, 2009.
DOI : 10.1038/nrendo.2009.21

S. Frigerio, T. Junt, B. Lu, C. Gerard, U. Zumsteg et al., ?? cells are responsible for CXCR3-mediated T-cell infiltration in insulitis, Nature Medicine, vol.13, issue.12, pp.1414-1420, 2002.
DOI : 10.1126/science.274.5284.94

M. Jacobsen, S. Ronn, C. Bruun, C. Larsen, D. Eizirik et al., IL-1??-induced chemokine and Fas expression are inhibited by suppressor of cytokine signalling-3 in insulin-producing cells, Diabetologia, vol.50, issue.Suppl 2, pp.281-288, 2009.
DOI : 10.1007/s00125-008-1199-1

S. Kassem, A. I. Thornton, P. Scheimberg, I. Glaser, and B. , Beta-cell proliferation and apoptosis in the developing normal human pancreas and in hyperinsulinism of infancy, Diabetes, vol.49, issue.8, pp.1325-1333, 2000.
DOI : 10.2337/diabetes.49.8.1325

K. Kelly-scumpia, P. Scumpia, M. Delano, J. Weinstein, A. Cuenca et al., Type I interferon signaling in hematopoietic cells is required for survival in mouse polymicrobial sepsis by regulating CXCL10, The Journal of Experimental Medicine, vol.178, issue.2, pp.319-326, 2010.
DOI : 10.1089/jir.2005.25.103

N. Kim, R. Chou, E. Seung, A. Tager, and A. Luster, receptor BLT1 for neutrophil recruitment in inflammatory arthritis, The Journal of Experimental Medicine, vol.281, issue.4, pp.829-835, 2006.
DOI : 10.1016/S0002-9440(10)63016-7

E. Kolaczkowska and P. Kubes, Neutrophil recruitment and function in health and inflammation, Nature Reviews Immunology, vol.121, issue.3, pp.159-175, 2013.
DOI : 10.1038/nri3399

A. Lehuen, J. Diana, P. Zaccone, and A. Cooke, Immune cell crosstalk in type 1 diabetes, Nature Reviews Immunology, vol.286, issue.7, pp.501-513, 2010.
DOI : 10.1038/nri2787

D. Mathis, L. Vence, and C. Benoist, ??-Cell death during progression to diabetes, Nature, vol.414, issue.6865, pp.792-798, 2001.
DOI : 10.1038/414792a

A. Mocsai, Diverse novel functions of neutrophils in immunity, inflammation, and beyond, The Journal of Experimental Medicine, vol.12, issue.7, pp.1283-1299, 2013.
DOI : 10.1016/j.immuni.2009.09.016

F. Nicoletti, D. Marco, R. Barcellini, W. Magro, G. Schorlemmer et al., Protection from experimental autoimmune diabetes in the non-obese diabetic mouse with soluble interleukin-1 receptor, European Journal of Immunology, vol.43, issue.8, pp.1843-1847, 1994.
DOI : 10.1002/eji.1830240818

F. Ortis, N. Naamane, D. Flamez, L. Ladriere, F. Moore et al., Cytokines Interleukin-1?? and Tumor Necrosis Factor-?? Regulate Different Transcriptional and Alternative Splicing Networks in Primary ??-Cells, Diabetes, vol.59, issue.2, pp.358-374, 2010.
DOI : 10.2337/db09-1159

L. Piemonti, B. Leone, R. Nano, A. Saccani, P. Monti et al., Human Pancreatic Islets Produce and Secrete MCP-1/CCL2: Relevance in Human Islet Transplantation, Diabetes, vol.51, issue.1, pp.55-65, 2002.
DOI : 10.2337/diabetes.51.1.55

C. Sadik, N. Kim, and A. Luster, Neutrophils cascading their way to inflammation, Trends in Immunology, vol.32, issue.10, pp.452-460, 2011.
DOI : 10.1016/j.it.2011.06.008

C. Sadik, N. Kim, Y. Iwakura, and A. Luster, Neutrophils orchestrate their own recruitment in murine arthritis through C5aR and Fc??R signaling, Proceedings of the National Academy of Sciences, vol.109, issue.46, pp.3177-3185, 2012.
DOI : 10.1073/pnas.1213797109

M. Sanz and P. Kubes, Neutrophil-active chemokines in in vivo imaging of neutrophil trafficking, European Journal of Immunology, vol.120, issue.2, pp.278-283, 2012.
DOI : 10.1002/eji.201142231

S. Sarkar, C. Lee, F. Victorino, T. Nguyen, J. Walters et al., Expression and Regulation of Chemokines in Murine and Human Type 1 Diabetes, Diabetes, vol.61, issue.2, pp.436-446, 2012.
DOI : 10.2337/db11-0853

T. Schall and A. Proudfoot, Overcoming hurdles in developing successful drugs targeting chemokine receptors, Nature Reviews Immunology, vol.319, issue.5, pp.355-363, 2011.
DOI : 10.1038/nri2972

A. Shahangian, E. Chow, X. Tian, J. Kang, A. Ghaffari et al., Type I IFNs mediate development of postinfluenza bacterial pneumonia in mice, Journal of Clinical Investigation, vol.119, issue.7, pp.1910-1920, 2009.
DOI : 10.1172/JCI35412DS1

M. Solomon, B. Balasa, and N. Sarvetnick, CCR2 and CCR5 chemokine receptors differentially influence the development of autoimmune diabetes in the NOD mouse, Autoimmunity, vol.92, issue.2, pp.156-163, 2010.
DOI : 10.1084/jem.192.7.1075

K. Stoffels, L. Overbergh, A. Giulietti, A. Kasran, R. Bouillon et al., NOD macrophages produce high levels of inflammatory cytokines upon encounter of apoptotic or necrotic cells, Journal of Autoimmunity, vol.23, issue.1, pp.9-15, 2004.
DOI : 10.1016/j.jaut.2004.03.012

H. Thomas, W. Irawaty, R. Darwiche, T. Brodnicki, P. Santamaria et al., IL-1 Receptor Deficiency Slows Progression to Diabetes in the NOD Mouse, Diabetes, vol.53, issue.1, pp.113-121, 2004.
DOI : 10.2337/diabetes.53.1.113

I. Tikhonov, T. Doroshenko, Y. Chaly, V. Smolnikova, C. Pauza et al., Down-regulation of CXCR1 and CXCR2 expression on human neutrophils upon activation of whole blood by S. aureus is mediated by TNF-alpha, Clinical and Experimental Immunology, vol.161, issue.3, pp.414-422, 2001.
DOI : 10.1006/cyto.1999.0664

J. Trudeau, J. Dutz, E. Arany, D. Hill, W. Fieldus et al., Neonatal beta-cell apoptosis: a trigger for autoimmune diabetes?, Diabetes, vol.49, issue.1, pp.1-7, 2000.
DOI : 10.2337/diabetes.49.1.1

S. Turley, L. Poirot, M. Hattori, C. Benoist, and D. Mathis, Physiological ?? Cell Death Triggers Priming of Self-reactive T Cells by Dendritic Cells in a Type-1 Diabetes Model, The Journal of Experimental Medicine, vol.159, issue.10, pp.1527-1537, 2003.
DOI : 10.1002/(SICI)1521-4141(199901)29:01<245::AID-IMMU245>3.0.CO;2-O