L. Bihan and D. , Looking into the functional architecture of the brain with diffusion MRI, Nature Reviews Neuroscience, vol.4, issue.6, pp.469-80, 2003.
DOI : 10.1038/nrn1119

URL : https://hal.archives-ouvertes.fr/hal-00349696

B. J. Jellison, A. S. Field, J. Medow, M. Lazar, M. S. Salamat et al., Diffusion tensor imaging of cerebral white matter: a pictorial review of physics, fiber tract anatomy, and tumor imaging patterns, Am. J. Neurorad, vol.25, issue.3, pp.356-69, 2004.

W. Penfield and T. Rasmussen, THE CEREBRAL CORTEX IN MAN, Archives of Neurology & Psychiatry, vol.40, issue.3, 1950.
DOI : 10.1001/archneurpsyc.1938.02270090011001

T. Behrens, H. Johansen-berg, S. Jbabdi, M. Rushworth, and M. Woolrich, Probabilistic diffusion tractography with multiple fibre orientations: What can we gain?, NeuroImage, vol.34, issue.1, pp.144-55, 2007.
DOI : 10.1016/j.neuroimage.2006.09.018

P. Fillard, M. Descoteaux, A. Goh, S. Gouttard, B. Jeurissen et al., Quantitative evaluation of 10 tractography algorithms on a realistic diffusion MR phantom, NeuroImage, vol.56, issue.1, pp.220-234, 2011.
DOI : 10.1016/j.neuroimage.2011.01.032

URL : https://hal.archives-ouvertes.fr/inria-00559191

M. Côté, A. Boré, G. Girard, J. Houde, M. et al., Tractometer: online evaluation system for tractography, In: MICCAI, pp.699-706, 2012.

A. Stamm, P. Pérez, and C. Barillot, A new multi-fiber model for low angular resolution diffusion MRI, 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI), pp.936-939, 2012.
DOI : 10.1109/ISBI.2012.6235710

URL : https://hal.archives-ouvertes.fr/inserm-00858205

A. Stamm, O. Commowick, C. Barillot, and P. Pérez, An adaptive multi-modal particle filter for white matter probabilistic tractography, Inf. Process. Med. Imaging, pp.7917-594, 2013.

N. Wiest-daesslé, S. Prima, P. Coupé, S. P. Morrissey, and C. Barillot, Rician Noise Removal by Non-Local Means Filtering for Low Signal-to-Noise Ratio MRI: Applications to DT-MRI, pp.171-180, 2008.
DOI : 10.1007/978-3-540-85990-1_21

P. Callaghan, Principles of Nuclear Magnetic Resonance microscopy, 1991.

T. Yoshiura, O. Wu, A. Zaheer, T. G. Reese, and A. G. Sorensen, Highly diffusion-sensitized MRI of brain: Dissociation of gray and white matter, Magnetic Resonance in Medicine, vol.199, issue.5, pp.734-774, 2001.
DOI : 10.1002/mrm.1100

B. Wang, J. Kuo, S. Bae, and S. Granick, When Brownian diffusion is not Gaussian, Nature Materials, vol.79, issue.6, pp.481-486, 2012.
DOI : 10.1038/nmat3308

D. Santis, S. Gabrielli, A. Palombo, M. Maraviglia, B. Capuani et al., Non-Gaussian diffusion imaging: a brief practical review, Magnetic Resonance Imaging, vol.29, issue.10, pp.1410-1416, 2011.
DOI : 10.1016/j.mri.2011.04.006

D. Raffelt, R. Smith, J. Tournier, D. Vaughan, G. Jackson et al., Fixel- Based Morphometry: Whole-Brain White Matter Morphometry in the Presence of Crossing Fibres, In: ISMRM, vol.22, issue.22, p.731, 2014.

M. W. Caan, H. G. Khedoe, D. H. Poot, A. J. Den-dekker, S. D. Olabarriaga et al., Estimation of Diffusion Properties in Crossing Fiber Bundles, IEEE Transactions on Medical Imaging, vol.29, issue.8, pp.1504-1519, 2010.
DOI : 10.1109/TMI.2010.2049577

M. Powell, The BOBYQA algorithm for bound constrained optimization without derivatives, 2009.

C. F. Westin, S. E. Maier, H. Mamata, A. Nabavi, F. Jolesz et al., Processing and visualization for diffusion tensor MRI, Medical Image Analysis, vol.6, issue.2, pp.93-108, 2002.
DOI : 10.1016/S1361-8415(02)00053-1

A. Mcquarrie, R. Shumway, and C. Tsai, The model selection criterion AICu, Statistics & Probability Letters, vol.34, issue.3, pp.285-292, 1997.
DOI : 10.1016/S0167-7152(96)00192-7

M. E. Newman, Modularity and community structure in networks, Proceedings of the National Academy of Sciences, vol.103, issue.23, pp.8577-82, 2006.
DOI : 10.1073/pnas.0601602103

A. Stamm, O. Commowick, P. Pérez, and C. Barillot, Fast identification of optimal fascicle configurations from standard clinical diffusion MRI using Akaike information criterion, 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI), pp.2014-2025, 2014.
DOI : 10.1109/ISBI.2014.6867853

URL : https://hal.archives-ouvertes.fr/inserm-00987802

A. Stamm, B. Scherrer, O. Commowick, C. Barillot, and S. Warfield, Fast and robust detection of the optimal number of fascicles in diffusion images using model averaging theory, In: ISMRM, vol.22, issue.22, p.2629, 2014.
URL : https://hal.archives-ouvertes.fr/inserm-00993965

U. Ebeling, P. Huber, and H. Reulen, Localization of the precentral gyrus in the computed tomogram and its clinical application, Journal of Neurology, vol.135, issue.2, pp.73-76, 1986.
DOI : 10.1007/BF00313850

M. Ono, S. Kubik, and C. Abernathey, Atlas of the cerebral sulci, 1990.

S. Wakana, A. Caprihan, M. M. Panzenboeck, J. H. Fallon, M. Perry et al., Reproducibility of quantitative tractography methods applied to cerebral white matter, NeuroImage, vol.36, issue.3, pp.630-644, 2007.
DOI : 10.1016/j.neuroimage.2007.02.049

Y. Zhang, J. Zhang, K. Oishi, A. V. Faria, H. Jiang et al., Atlas-guided tract reconstruction for automated and comprehensive examination of the white matter anatomy, NeuroImage, vol.52, issue.4, pp.1289-1301, 2010.
DOI : 10.1016/j.neuroimage.2010.05.049

O. Suarez, R. Commowick, O. Prabhu, P. , S. Warfield et al., Automated delineation of white matter fiber tracts with a multiple region-of-interest approach, NeuroImage, vol.59, issue.4, pp.3690-3700, 2012.
DOI : 10.1016/j.neuroimage.2011.11.043

URL : https://hal.archives-ouvertes.fr/inserm-00657707

O. Commowick, A. Akhondi-asl, K. Warfield, and S. , Estimating A Reference Standard Segmentation With Spatially Varying Performance Parameters: Local MAP STAPLE, IEEE Transactions on Medical Imaging, vol.31, issue.8, pp.1593-1606, 2012.
DOI : 10.1109/TMI.2012.2197406

URL : https://hal.archives-ouvertes.fr/inserm-00697775

P. Jupp and K. Mardia, A Unified View of the Theory of Directional Statistics, 1975-1988, International Statistical Review / Revue Internationale de Statistique, vol.57, issue.3, pp.261-294, 1989.
DOI : 10.2307/1403799

A. Doucet, S. Godsill, and C. Andrieu, On sequential Monte Carlo sampling methods for Bayesian filtering, Statistics and Computing, vol.10, issue.3, pp.197-208, 2000.
DOI : 10.1023/A:1008935410038

F. Zhang, E. R. Hancock, C. Goodlett, and G. Gerig, Probabilistic white matter fiber tracking using particle filtering and von Mises???Fisher sampling, Medical Image Analysis, vol.13, issue.1, pp.5-18, 2009.
DOI : 10.1016/j.media.2008.05.001

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2771420

J. Pontabry, F. Rousseau, E. Oubel, C. Studholme, M. Koob et al., Probabilistic tractography using Q-ball imaging and particle filtering: Application to adult and in-utero fetal brain studies, Medical Image Analysis, vol.17, issue.3, 2012.
DOI : 10.1016/j.media.2012.11.004

URL : https://hal.archives-ouvertes.fr/hal-00873625