P. Niaudet, Nephrotic syndrome in children, Current Opinion in Pediatrics, vol.5, issue.2, pp.174-179, 1993.
DOI : 10.1097/00008480-199304000-00007

M. Nakayama, R. Katafuchi, T. Yanase, K. Ikeda, H. Tanaka et al., Steroid responsiveness and frequency of relapse in adult-onset minimal change nephrotic syndrome, American Journal of Kidney Diseases, vol.39, issue.3, pp.503-512, 2002.
DOI : 10.1053/ajkd.2002.31400

P. Mathieson, Minimal change nephropathy and focal segmental glomerulosclerosis, Seminars in Immunopathology, vol.24, issue.Suppl 2, pp.415-426, 2007.
DOI : 10.1007/s00281-007-0094-z

M. Kestila, U. Lenkkeri, and M. Mannikko, Positionally Cloned Gene for a Novel Glomerular Protein???Nephrin???Is Mutated in Congenital Nephrotic Syndrome, Molecular Cell, vol.1, issue.4, pp.575-582, 1998.
DOI : 10.1016/S1097-2765(00)80057-X

N. Boute, O. Gribouval, and S. Roselli, NPHS2, encoding the glomerular protein podocin, is mutated in autosomal recessive steroid-resistant nephrotic syndrome, Nat Genet, vol.24, pp.349-354, 2000.

B. Hinkes, R. Wiggins, and R. Gbadegesin, Positional cloning uncovers mutations in PLCE1 responsible for a nephrotic syndrome variant that may be reversible, Nature Genetics, vol.98, issue.12, pp.1397-1405, 2006.
DOI : 10.1038/ng1918

J. Kaplan, S. Kim, and K. North, Mutations in ACTN4, encoding ??-actinin-4, cause familial focal segmental glomerulosclerosis, Nature Genetics, vol.6, issue.3, pp.251-256, 2000.
DOI : 10.1038/7675

J. Reiser, K. Polu, and C. Moller, TRPC6 is a glomerular slit diaphragm-associated channel required for normal renal function, Nature Genetics, vol.11, issue.7, pp.739-744, 2005.
DOI : 10.1006/jmbi.2000.4042

M. Lowik, P. Groenen, and I. Pronk, Focal segmental glomerulosclerosis in a patient homozygous for a CD2AP mutation, Kidney International, vol.72, issue.10, pp.1198-1203, 2007.
DOI : 10.1038/sj.ki.5002469

E. Brown, J. Schlondorff, and D. Becker, Mutations in the formin gene INF2 cause focal segmental glomerulosclerosis, Nature Genetics, vol.42, issue.1, pp.72-76, 2010.
DOI : 10.1002/cne.1128

A. Eddy and J. Symons, Nephrotic syndrome in childhood, The Lancet, vol.362, issue.9384, pp.629-639, 2003.
DOI : 10.1016/S0140-6736(03)14184-0

V. Guigonis, A. Dallocchio, and V. Baudouin, Rituximab treatment for severe steroid- or cyclosporine-dependent nephrotic syndrome: a multicentric series of 22 cases, Pediatric Nephrology, vol.65, issue.8, pp.1269-1279, 2008.
DOI : 10.1007/s00467-008-0814-1

URL : https://hal.archives-ouvertes.fr/hal-00453355

H. Munyentwali, K. Bouachi, and V. Audard, Rituximab is an efficient and safe treatment in adults with steroid-dependent minimal change disease, Kidney International, vol.83, issue.3, pp.511-516, 2013.
DOI : 10.1038/ki.2012.444

URL : https://hal.archives-ouvertes.fr/inserm-00919110

P. Ravani, A. Ponticelli, and C. Siciliano, Rituximab is a safe and effective long-term treatment for children with steroid and calcineurin inhibitor???dependent idiopathic nephrotic syndrome, Kidney International, vol.84, issue.5, pp.1025-1033, 2013.
DOI : 10.1038/ki.2013.211

S. Zhang, V. Audard, and Q. Fan, Immunopathogenesis of Idiopathic Nephrotic Syndrome, Contrib Nephrol, vol.169, pp.94-106, 2011.
DOI : 10.1159/000313947

URL : https://hal.archives-ouvertes.fr/inserm-00596992

H. Yap, W. Cheung, and B. Murugasu, Th1 and Th2 cytokine mRNA profiles in childhood nephrotic syndrome: evidence for increased IL-13 mRNA expression in relapse, J Am Soc Nephrol, vol.10, pp.529-537, 1999.

K. Lai, C. Wei, and L. Tan, Overexpression of Interleukin-13 Induces Minimal-Change-Like Nephropathy in Rats, Journal of the American Society of Nephrology, vol.18, issue.5, pp.1476-1485, 2007.
DOI : 10.1681/ASN.2006070710

. Van-den, J. Berg, J. Aten, and M. Chand, Interleukin-4 and interleukin-13 act on glomerular visceral epithelial cells, J Am Soc Nephrol, vol.11, pp.413-422, 2000.

P. Zhu, Y. Goh, and H. Chin, Angiopoietin-like 4: a decade of research, Bioscience Reports, vol.63, issue.3, pp.211-219, 2012.
DOI : 10.1182/blood-2011-01-328716

S. Koliwad, N. Gray, and J. Wang, Angiopoietin-like 4 (Angptl4), Adipocyte, vol.119, issue.3, pp.182-187
DOI : 10.1161/ATVBAHA.107.157776

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3609093

S. Koliwad, T. Kuo, and L. Shipp, Angiopoietin-like 4 (ANGPTL4, Fasting-induced Adipose Factor) Is a Direct Glucocorticoid Receptor Target and Participates in Glucocorticoid-regulated Triglyceride Metabolism, Journal of Biological Chemistry, vol.284, issue.38, pp.25593-25601, 2009.
DOI : 10.1074/jbc.M109.025452

A. Koster, Y. Chao, and M. Mosior, Transgenic Angiopoietin-Like (Angptl)4 Overexpression and Targeted Disruption of Angptl4 and Angptl3: Regulation of Triglyceride Metabolism, Endocrinology, vol.146, issue.11, pp.4943-4950, 2005.
DOI : 10.1210/en.2005-0476

L. Clement, C. Avila-casado, and C. Mace, Podocyte-secreted angiopoietin-like-4 mediates proteinuria in glucocorticoid-sensitive nephrotic syndrome, Nature Medicine, vol.49, issue.1, pp.117-122, 2011.
DOI : 10.1038/nm.2261

J. Reiser, G. Von-gersdorff, and M. Loos, Induction of B7-1 in podocytes is associated with nephrotic syndrome, Journal of Clinical Investigation, vol.113, issue.10, pp.1390-1397, 2004.
DOI : 10.1172/JCI20402

E. Garin, W. Mu, and J. Arthur, Urinary CD80 is elevated in minimal change disease but not in focal segmental glomerulosclerosis, Kidney International, vol.78, issue.3, pp.296-302, 2010.
DOI : 10.1038/ki.2010.143

E. Garin, W. Mu, and J. Arthur, Urinary CD80 is elevated in minimal change disease but not in focal segmental glomerulosclerosis, Kidney International, vol.78, issue.3, pp.296-302, 2010.
DOI : 10.1038/ki.2010.143

URL : http://doi.org/10.1038/ki.2010.143

M. Navarro-munoz, M. Ibernon, and . Perez, Messenger RNA expression of B7-1 and NPHS1 in urinary sediment could be useful to differentiate between minimal-change disease and focal segmental glomerulosclerosis in adult patients, Nephrology Dialysis Transplantation, vol.26, issue.12, pp.3914-3923, 2011.
DOI : 10.1093/ndt/gfr128

C. Yu, A. Fornoni, and A. Weins, Abatacept in B7-1???Positive Proteinuric Kidney Disease, New England Journal of Medicine, vol.369, issue.25, 2013.
DOI : 10.1056/NEJMoa1304572

D. Sahali, A. Pawlak, and A. Valanciute, A novel approach to investigation of the pathogenesis of active minimal-change nephrotic syndrome using subtracted cDNA library screening, J Am Soc Nephrol, vol.13, pp.1238-1247, 2002.

P. Grimbert, A. Valanciute, and V. Audard, Truncation of C-mip (Tc-mip), a New Proximal Signaling Protein, Induces c-maf Th2 Transcription Factor and Cytoskeleton Reorganization, The Journal of Experimental Medicine, vol.10, issue.5, pp.797-807, 2003.
DOI : 10.1074/jbc.270.31.18388

URL : https://hal.archives-ouvertes.fr/inserm-00000005

M. Kamal, A. Valanciute, and K. Dahan, C-mip interacts physically with RelA and inhibits nuclear factor kappa B activity, Molecular Immunology, vol.46, issue.5, pp.991-998, 2009.
DOI : 10.1016/j.molimm.2008.09.034

S. Zhang, M. Kamal, and K. Dahan, c-mip Impairs Podocyte Proximal Signaling and Induces Heavy Proteinuria, Science Signaling, vol.3, issue.122, p.39, 2010.
DOI : 10.1126/scisignal.2000678

URL : https://hal.archives-ouvertes.fr/inserm-00489747

V. Audard, S. Zhang, and C. Copie-bergman, Occurrence of minimal change nephrotic syndrome in classical Hodgkin lymphoma is closely related to the induction of c-mip in Hodgkin-Reed Sternberg cells and podocytes, Blood, vol.115, issue.18, pp.3756-3762, 2010.
DOI : 10.1182/blood-2009-11-251132

URL : https://hal.archives-ouvertes.fr/inserm-00485558

J. Cambier and P. Ronco, Onco-Nephrology: Glomerular Diseases with Cancer, Clinical Journal of the American Society of Nephrology, vol.7, issue.10, pp.1701-1712, 2012.
DOI : 10.2215/CJN.03770412

URL : https://hal.archives-ouvertes.fr/inserm-00919120

K. Sendeyo, V. Audard, . Zhang, and . Sy, Upregulation of c-mip is closely related to podocyte dysfunction in membranous nephropathy, Kidney International, vol.83, issue.3, pp.414-425, 2013.
DOI : 10.1038/ki.2012.426

URL : https://hal.archives-ouvertes.fr/inserm-00815234

V. Ory, Q. Fan, and N. Hamdaoui, c-mip Down-Regulates NF-??B Activity and Promotes Apoptosis in Podocytes, The American Journal of Pathology, vol.180, issue.6, pp.2284-2292
DOI : 10.1016/j.ajpath.2012.02.008

URL : http://doi.org/10.1016/j.ajpath.2012.02.008

J. Patrakka and K. Tryggvason, Nephrin ??? a unique structural and signaling protein of the kidney filter, Trends in Molecular Medicine, vol.13, issue.9, pp.396-403, 2007.
DOI : 10.1016/j.molmed.2007.06.006

L. New, K. Chahi, A. Jones, and N. , Direct Regulation of Nephrin Tyrosine Phosphorylation by Nck Adaptor Proteins, Journal of Biological Chemistry, vol.288, issue.3, pp.1500-1510, 2013.
DOI : 10.1074/jbc.M112.439463

T. Huber, B. Hartleben, and J. Kim, Nephrin and CD2AP Associate with Phosphoinositide 3-OH Kinase and Stimulate AKT-Dependent Signaling, Molecular and Cellular Biology, vol.23, issue.14, pp.4917-4928, 2003.
DOI : 10.1128/MCB.23.14.4917-4928.2003

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC162232

I. Quack, L. Rump, and P. Gerke, beta-Arrestin2 mediates nephrin endocytosis and impairs slit diaphragm integrity, Proceedings of the National Academy of Sciences, vol.103, issue.38, pp.14110-14115, 2006.
DOI : 10.1073/pnas.0602587103

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1564064

K. Uchida, K. Suzuki, and M. Iwamoto, Decreased tyrosine phosphorylation of nephrin in rat and human nephrosis, Kidney International, vol.73, issue.8, pp.926-958, 2008.
DOI : 10.1038/ki.2008.19

R. Foster, M. Saleem, and P. Mathieson, Vascular endothelial growth factor and nephrin interact and reduce apoptosis in human podocytes, AJP: Renal Physiology, vol.288, issue.1, pp.48-57, 2005.
DOI : 10.1152/ajprenal.00146.2004

M. Schiffer, M. Bitzer, and I. Roberts, Apoptosis in podocytes induced by TGF-?? and Smad7, Journal of Clinical Investigation, vol.108, issue.6, pp.807-816, 2001.
DOI : 10.1172/JCI200112367

M. Schiffer, P. Mundel, and A. Shaw, A Novel Role for the Adaptor Molecule CD2-associated Protein in Transforming Growth Factor-??-induced Apoptosis, Journal of Biological Chemistry, vol.279, issue.35, pp.37004-37012, 2004.
DOI : 10.1074/jbc.M403534200

N. Shih, . Lj, V. Karpitskii, and A. Nguyen, Congenital Nephrotic Syndrome in Mice Lacking CD2-Associated Protein, Science, vol.286, issue.5438, pp.312-315, 1999.
DOI : 10.1126/science.286.5438.312

N. Sakai, T. Wada, and K. Furuichi, p38 MAPK phosphorylation and NF-kappaB activation in human crescentic glomerulonephritis, Nephrology Dialysis Transplantation, vol.17, issue.6, pp.998-1004, 2002.
DOI : 10.1093/ndt/17.6.998

URL : http://ndt.oxfordjournals.org/cgi/content/short/17/6/998

C. Stambe, D. Nikolic-paterson, and P. Hill, p38 Mitogen-Activated Protein Kinase Activation and Cell Localization in Human Glomerulonephritis: Correlation with Renal Injury, Journal of the American Society of Nephrology, vol.15, issue.2, pp.326-336, 2004.
DOI : 10.1097/01.ASN.0000108520.63445.E0

M. Koshikawa, M. Mukoyama, and K. Mori, Role of p38 Mitogen-Activated Protein Kinase Activation in Podocyte Injury and Proteinuria in Experimental Nephrotic Syndrome, Journal of the American Society of Nephrology, vol.16, issue.9, pp.2690-2701, 2005.
DOI : 10.1681/ASN.2004121084

A. Mima, M. Kitada, and P. Geraldes, Glomerular VEGF resistance induced by PKCdelta, 2012.

Y. Emoto, Y. Manome, and G. Meinhardt, Proteolytic activation of protein kinase C delta by an ICE-like protease in apoptotic cells, EMBO J, vol.14, pp.6148-6156, 1995.

M. Kamal, . Pawlak, and A. Benmohamed, C-mip interacts with the p85 subunit of PI3 kinase and exerts a dual effect on ERK signaling via the recruitment of Dip1 and DAP kinase, FEBS Letters, vol.10, issue.3, pp.500-506, 2010.
DOI : 10.1016/j.febslet.2009.12.015

W. Wang, J. Kuo, and C. Yao, DAP-kinase induces apoptosis by suppressing integrin activity and disrupting matrix survival signals, The Journal of Cell Biology, vol.269, issue.1, pp.169-179, 2002.
DOI : 10.1074/jbc.M910027199

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2173490

C. Gourlay, L. Carpp, and P. Timpson, A role for the actin cytoskeleton in cell death and aging in yeast, The Journal of Cell Biology, vol.113, issue.6, pp.803-809, 2004.
DOI : 10.1007/s002320010060

V. Eremina, J. Jefferson, and J. Kowalewska, VEGF Inhibition and Renal Thrombotic Microangiopathy, New England Journal of Medicine, vol.358, issue.11, 2008.
DOI : 10.1056/NEJMoa0707330

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3030578

K. Sison, V. Eremina, and H. Baelde, Glomerular Structure and Function Require Paracrine, Not Autocrine, VEGF-VEGFR-2 Signaling, Journal of the American Society of Nephrology, vol.21, issue.10, pp.1691-1701, 2010.
DOI : 10.1681/ASN.2010030295

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3013545

D. Veron, K. Reidy, and C. Bertuccio, Overexpression of VEGF-A in podocytes of adult mice causes glomerular disease, Kidney International, vol.77, issue.11, pp.989-999, 2010.
DOI : 10.1038/ki.2010.64

S. Ivy, J. Wick, and B. Kaufman, An overview of small-molecule inhibitors of VEGFR signaling, Nature Reviews Clinical Oncology, vol.15, issue.10, pp.569-579, 2009.
DOI : 10.1038/nrclinonc.2009.130

H. Izzedine, C. Massard, and J. Spano, VEGF signalling inhibition-induced proteinuria: Mechanisms, significance and management, European Journal of Cancer, vol.46, issue.2, pp.439-448, 2010.
DOI : 10.1016/j.ejca.2009.11.001

V. Echeverria, S. Burgess, and J. Gamble-george, Sorafenib inhibits nuclear factor kappa B, decreases inducible nitric oxide synthase and cyclooxygenase-2 expression, and restores working memory in APPswe mice, Neuroscience, vol.162, issue.4, pp.1220-1231, 2009.
DOI : 10.1016/j.neuroscience.2009.05.019

P. Niaudet, M. Gagnadoux, and M. Broyer, Treatment of childhood steroid-resistant idiopathic nephrotic syndrome, Adv Nephrol Necker Hosp, vol.28, pp.43-61, 1998.

A. Magnasco, P. Ravani, and A. Edefonti, Rituximab in Children with Resistant Idiopathic Nephrotic Syndrome, Journal of the American Society of Nephrology, vol.23, issue.6, pp.1117-1124, 2012.
DOI : 10.1681/ASN.2011080775

E. Ramos, Recurrent diseases in the renal allograft, J Am Soc Nephrol, vol.2, pp.109-121, 1991.

T. Fairhead and G. Knoll, Recurrent glomerular disease after kidney transplantation, Current Opinion in Nephrology and Hypertension, vol.19, issue.6, pp.578-585, 2010.
DOI : 10.1097/MNH.0b013e32833d6904

G. Canaud, F. Martinez, and L. Noel, Therapeutic approach to focal and segmental glomerulosclerosis recurrence in kidney transplant recipients, Transplantation Reviews, vol.24, issue.3, pp.121-128, 2010.
DOI : 10.1016/j.trre.2010.04.001

P. Cravedi, J. Kopp, and G. Remuzzi, Recent Progress in the Pathophysiology and Treatment of FSGS Recurrence, American Journal of Transplantation, vol.9, issue.3, pp.266-274, 2013.
DOI : 10.1111/ajt.12045

J. Hoyer, R. Vernier, and J. Najarian, RECURRENCE OF IDIOPATHIC NEPHROTIC SYNDROME AFTER RENAL TRANSPLANTATION, The Lancet, vol.300, issue.7773, pp.343-348, 1972.
DOI : 10.1016/S0140-6736(72)91734-5

M. Kemper, G. Wolf, and D. Muller-wiefel, Transmission of Glomerular Permeability Factor from a Mother to Her Child, New England Journal of Medicine, vol.344, issue.5, pp.386-387, 2001.
DOI : 10.1056/NEJM200102013440517

A. Ali, E. Wilson, and J. Moorhead, Minimal-change glomerular nephritis. Normal kidneys in an abnormal environment?, Transplantation, vol.58, pp.849-852, 1994.

R. Rea, C. Smith, and K. Sandhu, Successful transplant of a kidney with focal segmental glomerulosclerosis, Nephrology Dialysis Transplantation, vol.16, issue.2, pp.416-417, 2001.
DOI : 10.1093/ndt/16.2.416

S. Feld, . Fp, V. Savin, and C. Nast, Plasmapheresis in the treatment of steroid-resistant focal segmental glomerulosclerosis in native kidneys, American Journal of Kidney Diseases, vol.32, issue.2, pp.230-237, 1998.
DOI : 10.1053/ajkd.1998.v32.pm9708606

D. Ginsburg and . Dp, Plasmapheresis in the treatment of steroid-resistant focal segmental glomerulosclerosis, 1997.

J. Dantal, E. Bigot, and W. Bogers, Effect of Plasma Protein Adsorption on Protein Excretion in Kidney-Transplant Recipients with Recurrent Nephrotic Syndrome, New England Journal of Medicine, vol.330, issue.1, pp.7-14, 1994.
DOI : 10.1056/NEJM199401063300102

J. Dantal, Y. Godfrin, and R. Koll, Antihuman immunoglobulin affinity immunoadsorption strongly decreases proteinuria in patients with relapsing nephrotic syndrome, J Am Soc Nephrol, vol.9, pp.1709-1715, 1998.

V. Savin, R. Sharma, and M. Sharma, Circulating Factor Associated with Increased Glomerular Permeability to Albumin in Recurrent Focal Segmental Glomerulosclerosis, New England Journal of Medicine, vol.334, issue.14, pp.878-883, 1996.
DOI : 10.1056/NEJM199604043341402

B. Jones, J. Tulloch, I. Dore, and B. , Changes in the glomerular capillary wall induced by lymphocyte products and serum of nephrotic patients, Clin Nephrol, vol.20, pp.72-77, 1983.

N. Yoshizawa, Y. Kusumi, and K. Matsumoto, Studies of a Glomerular Permeability Factor in Patients with Minimal-Change Nephrotic Syndrome, Nephron, vol.51, issue.3, pp.370-376, 1989.
DOI : 10.1159/000185325

A. Koyama, M. Fujisaki, and M. Kobayashi, A glomerular permeability factor produced by human T cell hybridomas, Kidney International, vol.40, issue.3, pp.453-460, 1991.
DOI : 10.1038/ki.1991.232

E. Mccarthy, M. Sharma, and V. Savin, Circulating Permeability Factors in Idiopathic Nephrotic Syndrome and Focal Segmental Glomerulosclerosis, Clinical Journal of the American Society of Nephrology, vol.5, issue.11, pp.2115-2121, 2010.
DOI : 10.2215/CJN.03800609

C. Wei, S. Hindi, J. Fornoni, and A. , Circulating urokinase receptor as a cause of focal segmental glomerulosclerosis, Nature Medicine, vol.119, issue.8, pp.952-960, 2011.
DOI : 10.1159/000093259

J. Eugen-olsen, O. Andersen, and A. Linneberg, Circulating soluble urokinase plasminogen activator receptor predicts cancer, cardiovascular disease, diabetes and mortality in the general population, Journal of Internal Medicine, vol.27, issue.Pt 14, pp.296-308, 2010.
DOI : 10.1111/j.1365-2796.2010.02252.x

M. Bock, H. Price, L. Gallon, and C. Langman, Serum Soluble Urokinase-Type Plasminogen Activator Receptor Levels and Idiopathic FSGS in Children: A Single-Center Report, Clinical Journal of the American Society of Nephrology, vol.8, issue.8, pp.1304-1311, 2013.
DOI : 10.2215/CJN.07680712

R. Maas, J. Wetzels, and J. Deegens, Serum-soluble urokinase receptor concentration in primary FSGS, Kidney International, vol.81, issue.10, 2012.
DOI : 10.1038/ki.2012.32

C. Wei, H. Trachtman, and J. Li, Circulating suPAR in Two Cohorts of Primary FSGS, Journal of the American Society of Nephrology, vol.23, issue.12, pp.2051-2059, 2012.
DOI : 10.1681/ASN.2012030302

F. Palacios, C. Lieske, J. Wadei, and H. , Urine But Not Serum Soluble Urokinase Receptor (suPAR) May Identify Cases of Recurrent FSGS in Kidney Transplant Candidates, Transplantation Journal, vol.96, issue.4, pp.394-399, 2013.
DOI : 10.1097/TP.0b013e3182977ab1

S. Beaudreuil, X. Zhang, and F. Kriaa, Protein A immunoadsorption cannot significantly remove the soluble receptor of urokinase from sera of patients with recurrent focal segmental glomerulosclerosis, Nephrology Dialysis Transplantation, vol.29, issue.2, 2013.
DOI : 10.1093/ndt/gft453

A. Fornoni, J. Sageshima, and C. Wei, Rituximab Targets Podocytes in Recurrent Focal Segmental Glomerulosclerosis, Science Translational Medicine, vol.3, issue.85, pp.85-131, 2011.
DOI : 10.1126/scitranslmed.3002231