H. Taegtmeyer, Energy metabolism of the heart: From basic concepts to clinical applications applications, Current Problems in Cardiology, vol.19, issue.2, pp.59-113, 1994.
DOI : 10.1016/0146-2806(94)90008-6

G. Lopaschuk, D. Belke, J. Gamble, T. Itoi, and B. Schonekess, Regulation of fatty acid oxidation in the mammalian heart in health and disease, Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism, vol.1213, issue.3, pp.263-276, 1994.
DOI : 10.1016/0005-2760(94)00082-4

G. Van-der-vusse, M. Van-bilsen, and J. Glatz, Cardiac fatty acid uptake and transport in health and disease, Cardiovascular Research, vol.45, issue.2, pp.279-293, 2000.
DOI : 10.1016/S0008-6363(99)00263-1

F. Visser, Imaging of cardiac metabolism using radiolabelled glucose, fatty acids and acetate, Coron Artery Dis, vol.12, issue.1, pp.12-18, 2001.

S. Hendrickson, . St, J. Louis, and J. Lowe, Abdel-aleem S. Free fatty acid metabolism during myocardial ischemia and reperfusion, Molecular and Cellular Biochemistry, vol.166, issue.1/2, pp.85-94, 1997.
DOI : 10.1023/A:1006886601825

G. Lopaschuk and W. Stanley, Glucose Metabolism in the Ischemic Heart, Circulation, vol.95, issue.2, pp.313-315, 1997.
DOI : 10.1161/01.CIR.95.2.313

R. Tian and E. Abel, Responses of GLUT4-Deficient Hearts to Ischemia Underscore the Importance of Glycolysis, Circulation, vol.103, issue.24, pp.2961-2966, 2001.
DOI : 10.1161/01.CIR.103.24.2961

M. Essop and L. Opie, Metabolic therapy for heart failure, Eur Heart J, vol.25, pp.1765-1768, 2004.

G. Lopaschuk, J. Ussher, C. Folmes, J. Jaswal, and W. Stanley, Myocardial Fatty Acid Metabolism in Health and Disease, Physiological Reviews, vol.90, issue.1, pp.207-258, 2010.
DOI : 10.1152/physrev.00015.2009

W. Stanley, G. Lopaschuk, J. Hall, and J. Mccormack, Regulation of myocardial carbohydrate metabolism under normal and ischaemic conditions Potential for pharmacological interventions, Cardiovascular Research, vol.33, issue.2, pp.243-257, 1997.
DOI : 10.1016/S0008-6363(96)00245-3

T. Romacho, M. Elsen, D. Röhrborn, and J. Eckel, Adipose tissue and its role in organ crosstalk, Acta Physiologica, vol.582, issue.Suppl 1, pp.733-753, 2014.
DOI : 10.1111/apha.12246

K. Nakamura, J. Fuster, and K. Walsh, Adipokines: A link between obesity and cardiovascular disease, Journal of Cardiology, vol.63, issue.4, pp.250-259, 2014.
DOI : 10.1016/j.jjcc.2013.11.006

M. Blüher, Adipose tissue dysfunction contributes to obesity related metabolic diseases, Best Practice & Research Clinical Endocrinology & Metabolism, vol.27, issue.2, pp.163-177, 2013.
DOI : 10.1016/j.beem.2013.02.005

M. Kleinz and A. Davenport, Emerging roles of apelin in biology and medicine, Pharmacology & Therapeutics, vol.107, issue.2, pp.198-211, 2005.
DOI : 10.1016/j.pharmthera.2005.04.001

C. Foussal, O. Lairez, D. Calise, A. Pathak, C. Guilbeau-frugier et al., Activation of catalase by apelin prevents oxidative stress-linked cardiac hypertrophy, FEBS Letters, vol.283, issue.11, pp.2363-2370, 2010.
DOI : 10.1016/j.febslet.2010.04.025

URL : https://hal.archives-ouvertes.fr/inserm-00505022

K. Kuba, L. Zhang, Y. Imai, S. Arab, M. Chen et al., Impaired Heart Contractility in Apelin Gene Deficient Mice Associated With Aging and Pressure Overload, Circulation Research, vol.101, issue.4, pp.32-42, 2007.
DOI : 10.1161/CIRCRESAHA.107.158659

J. Boucher, B. Masri, D. Daviaud, S. Gesta, C. Guigne et al., Apelin, a Newly Identified Adipokine Up-Regulated by Insulin and Obesity, Endocrinology, vol.146, issue.4, pp.1764-1771, 2005.
DOI : 10.1210/en.2004-1427

URL : https://hal.archives-ouvertes.fr/inserm-00480981

C. Dray, C. Knauf, D. Daviaud, A. Waget, J. Boucher et al., Apelin Stimulates Glucose Utilization in Normal and Obese Insulin-Resistant Mice, Cell Metabolism, vol.8, issue.5, pp.437-445, 2008.
DOI : 10.1016/j.cmet.2008.10.003

URL : https://hal.archives-ouvertes.fr/inserm-00408948

C. Attane, C. Foussal, L. Gonidec, S. Benani, A. Daviaud et al., Apelin Treatment Increases Complete Fatty Acid Oxidation, Mitochondrial Oxidative Capacity, and Biogenesis in Muscle of Insulin-Resistant Mice, Diabetes, vol.61, issue.2, pp.310-320, 2012.
DOI : 10.2337/db11-0100

URL : https://hal.archives-ouvertes.fr/hal-00723095

H. Zeng, X. He, X. Hou, L. Li, and J. Chen, Apelin gene therapy increases myocardial vascular density and ameliorates diabetic cardiomyopathy via upregulation of sirtuin 3, AJP: Heart and Circulatory Physiology, vol.306, issue.4, pp.585-597, 2014.
DOI : 10.1152/ajpheart.00821.2013

S. Sinatra, Metabolic cardiology: an integrative strategy in the treatment of congestive heart failure, Altern Ther Health Med, vol.15, pp.44-52, 2009.

R. Tian and E. Abel, Responses of GLUT4-Deficient Hearts to Ischemia Underscore the Importance of Glycolysis, Circulation, vol.103, issue.24, pp.2961-2966, 2001.
DOI : 10.1161/01.CIR.103.24.2961

J. Yan, M. Young, L. Cui, G. Lopaschuk, R. Liao et al., Increased Glucose Uptake and Oxidation in Mouse Hearts Prevent High Fatty Acid Oxidation but Cause Cardiac Dysfunction in Diet-Induced Obesity, Circulation, vol.119, issue.21, pp.2818-2828, 2009.
DOI : 10.1161/CIRCULATIONAHA.108.832915

T. Nagoshi, M. Yoshimura, G. Rosano, G. Lopaschuk, and S. Mochizuki, Optimization of Cardiac Metabolism in Heart Failure, Current Pharmaceutical Design, vol.17, issue.35, pp.3846-3853, 2011.
DOI : 10.2174/138161211798357773

M. Allard, P. Emanuel, J. Russell, S. Bishop, S. Digerness et al., Preischemic glycogen reduction or glycolytic inhibition improves postischemic recovery of hypertrophied rat hearts, Am J Physiol, vol.267, pp.66-74, 1994.

W. Stanley, F. Recchia, and G. Lopaschuk, Myocardial Substrate Metabolism in the Normal and Failing Heart, Physiological Reviews, vol.85, issue.3, pp.1093-1129, 2005.
DOI : 10.1152/physrev.00006.2004

A. Augustus, J. Buchanan, T. Park, K. Hirata, H. Noh et al., Loss of Lipoprotein Lipase-derived Fatty Acids Leads to Increased Cardiac Glucose Metabolism and Heart Dysfunction, Journal of Biological Chemistry, vol.281, issue.13, pp.8716-8723, 2006.
DOI : 10.1074/jbc.M509890200

Y. Iwanaga, Y. Kihara, H. Takenaka, and T. Kita, Down-regulation of cardiac apelin system in hypertrophied and failing hearts: Possible role of angiotensin II???angiotensin type 1 receptor system, Journal of Molecular and Cellular Cardiology, vol.41, issue.5, pp.798-806, 2006.
DOI : 10.1016/j.yjmcc.2006.07.004

W. Koguchi, N. Kobayashi, H. Takeshima, M. Ishikawa, F. Sugiyama et al., Cardioprotective Effect of Apelin-13 on Cardiac Performance and Remodeling in End-Stage Heart Failure, Circulation Journal, vol.76, issue.1, pp.137-144, 2012.
DOI : 10.1253/circj.CJ-11-0689

A. Japp, N. Cruden, G. Barnes, N. Van-gemeren, J. Mathews et al., Acute Cardiovascular Effects of Apelin in Humans: Potential Role in Patients With Chronic Heart Failure, Circulation, vol.121, issue.16, pp.1818-1827, 2010.
DOI : 10.1161/CIRCULATIONAHA.109.911339

M. Scimia, C. Hurtado, S. Ray, S. Metzler, K. Wei et al., APJ acts as a dual receptor in cardiac hypertrophy, Nature, vol.96, issue.7411, pp.394-398, 2012.
DOI : 10.1038/nature11263

M. Rosca, E. Vazquez, J. Kerner, W. Parland, M. Chandler et al., Cardiac mitochondria in heart failure: decrease in respirasomes and oxidative phosphorylation, Cardiovascular Research, vol.80, issue.1, pp.30-39, 2008.
DOI : 10.1093/cvr/cvn184

V. Sharov, A. Todor, N. Silverman, S. Goldstein, and H. Sabbah, Abnormal Mitochondrial Respiration in Failed Human Myocardium, Journal of Molecular and Cellular Cardiology, vol.32, issue.12, pp.2361-2367, 2000.
DOI : 10.1006/jmcc.2000.1266

B. Frier, D. Williams, and D. Wright, The effects of apelin treatment on skeletal muscle mitochondrial content, AJP: Regulatory, Integrative and Comparative Physiology, vol.297, issue.6, pp.1761-1768, 2009.
DOI : 10.1152/ajpregu.00422.2009

B. Schwer, B. North, R. Frye, M. Ott, and E. Verdin, The human silent information regulator (Sir)2 homologue hSIRT3 is a mitochondrial nicotinamide adenine dinucleotide???dependent deacetylase, The Journal of Cell Biology, vol.326, issue.4, pp.647-657, 2002.
DOI : 10.1016/S0248-4900(98)80020-8

B. Ahn, H. Kim, S. Song, I. Lee, J. Liu et al., A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis, Proceedings of the National Academy of Sciences, vol.105, issue.38, pp.14447-14452, 2008.
DOI : 10.1073/pnas.0803790105