G. Levy, E. Thervet, J. Lake, and K. Uchida, Patient management by Neoral C2 monitoring: An international consensus statement1, Transplantation, vol.73, issue.Supplement, pp.12-18, 2002.
DOI : 10.1097/00007890-200205151-00003

P. Wallemacq, Opportunities to Optimize Tacrolimus Therapy in Solid Organ Transplantation: Report of the European Consensus Conference, Therapeutic Drug Monitoring, vol.31, issue.2, pp.139-152, 2009.
DOI : 10.1097/FTD.0b013e318198d092

T. Van-gelder, Therapeutic Drug Monitoring for Mycophenolic Acid Is Value for (Little) Money, Clinical Pharmacology & Therapeutics, vol.90, issue.2, pp.203-204, 2011.
DOI : 10.1097/TP.0b013e3181d75952

R. Byrne, S. E. Yost, and B. Kaplan, Mycophenolate Mofetil Monitoring: Is There Evidence That It Can Improve Outcomes?, Clinical Pharmacology & Therapeutics, vol.48, issue.2, pp.204-206, 2011.
DOI : 10.1056/NEJMoa067411

H. Ekberg, Reduced Exposure to Calcineurin Inhibitors in Renal Transplantation, New England Journal of Medicine, vol.357, issue.25, pp.2562-2575, 2007.
DOI : 10.1056/NEJMoa067411

H. Ekberg, Cyclosporine Sparing with Mycophenolate Mofetil, Daclizumab and Corticosteroids in Renal Allograft Recipients: The CAESAR Study, American Journal of Transplantation, vol.13, issue.3, pp.560-570, 2007.
DOI : 10.1097/01.ASN.0000013298.11876.BF

A. K. Frobel, A Time-to-Event Model for Acute Rejections in Paediatric Renal Transplant Recipients Treated with Ciclosporin A. Br, J. Clin. Pharmacol, vol.76, pp.603-615, 2013.

T. Van-gelder, Mycophenolate Blood Level Monitoring: Recent Progress, American Journal of Transplantation, vol.14, issue.Suppl, pp.1495-1499, 2009.
DOI : 10.1111/j.1600-6143.2009.02678.x

L. Meur and Y. , Individualized Mycophenolate Mofetil Dosing Based on Drug Exposure Significantly Improves Patient Outcomes After Renal Transplantation, American Journal of Transplantation, vol.82, issue.1, pp.2496-2503, 2007.
DOI : 10.1097/00007691-200412000-00005

T. Van-gelder, Comparing Mycophenolate Mofetil Regimens for de Novo Renal Transplant Recipients: The Fixed-Dose Concentration-Controlled Trial, Transplantation, vol.86, issue.8, pp.1043-51, 2008.
DOI : 10.1097/TP.0b013e318186f98a

L. Meur and Y. , Early Steroid Withdrawal and Optimization of Mycophenolic Acid Exposure in Kidney Transplant Recipients Receiving Mycophenolate Mofetil, Transplantation, vol.92, issue.11, pp.1244-1251, 2011.
DOI : 10.1097/TP.0b013e318234e134

URL : https://hal.archives-ouvertes.fr/hal-01151208

S. Sagedal, The Impact of Cytomegalovirus Infection and Disease on Rejection Episodes in Renal Allograft Recipients, American Journal of Transplantation, vol.55, issue.9, pp.850-856, 2002.
DOI : 10.1034/j.1399-0012.2000.140306.x

T. Reischig, Cytomegalovirus-associated renal allograft rejection: new challenges for antiviral preventive strategies, Expert Review of Anti-infective Therapy, vol.8, issue.8, pp.903-910, 2010.
DOI : 10.1586/eri.10.63

T. Reischig, P. Jindra, O. Hes, M. Bouda, S. Kormunda et al., Effect of Cytomegalovirus Viremia on Subclinical Rejection or Interstitial Fibrosis and Tubular Atrophy in Protocol Biopsy at 3 Months in Renal Allograft Recipients Managed by Preemptive Therapy or Antiviral Prophylaxis, Transplantation, vol.87, issue.3, pp.436-444, 2009.
DOI : 10.1097/TP.0b013e318192ded5

J. M. Smith, Subclinical Viremia Increases Risk for Chronic Allograft Injury in Pediatric Renal Transplantation, Journal of the American Society of Nephrology, vol.21, issue.9, pp.1579-1586, 2010.
DOI : 10.1681/ASN.2009111188

D. S. Fryd, P. K. Peterson, R. M. Ferguson, R. L. Simmons, H. H. Balfour et al., CYTOMEGALOVIRUS AS A RISK FACTOR IN RENAL TRANSPLANTATION, Transplantation, vol.30, issue.6, pp.436-439, 1980.
DOI : 10.1097/00007890-198012000-00010

B. M. Eriksson, A prospective study of rapid methods of detecting cytomegalovirus in the blood of renal transplant recipients in relation to patient and graft survival, Clin.Transplant, vol.10, pp.494-502, 1996.

S. Sagedal, Impact of early cytomegalovirus infection and disease on long-term recipient and kidney graft survival, Kidney International, vol.66, issue.1, pp.329-337, 2004.
DOI : 10.1111/j.1523-1755.2004.00735.x

L. Page, A. K. Jager, M. M. Kotton, C. N. Simoons-smit, A. Rawlinson et al., International Survey of Cytomegalovirus Management in Solid Organ Transplantation After the Publication of Consensus Guidelines, Transplantation Journal, vol.95, issue.12, pp.1455-1460, 2013.
DOI : 10.1097/TP.0b013e31828ee12e

D. Rizopoulos, JM: an R package for the Joint Modeling of Longitudinal and Time-toevent Data, J. Stat. Softw, vol.35, pp.1-33, 2010.

A. A. Tsiatis and M. Davidian, Joint modeling of longitudinal and time-to-event data: an overview, Stat. Sin, vol.14, pp.809-834, 2004.

M. Yu, N. J. Law, J. M. Taylor, and H. M. Sandler, Joint longitudinal-survival-cure models and their application to prostate cancer, Stat. Sin, vol.14, pp.835-862, 2004.

H. Jacqmin-gadda, R. Thiébaut, and J. Dartigues, Mod??lisation conjointe de donn??es longitudinales quantitatives et de d??lais censur??s, Revue d'??pid??miologie et de Sant?? Publique, vol.52, issue.6, pp.502-510, 2004.
DOI : 10.1016/S0398-7620(04)99090-6

J. Horrocks and M. J. Van-den-heuvel, Prediction of pregnancy: a joint model for longitudinal and binary data, Bayesian Analysis, vol.4, issue.3, pp.523-538, 2009.
DOI : 10.1214/09-BA419

E. Li, D. Zhang, and M. Davidian, Conditional Estimation for Generalized Linear Models When Covariates Are Subject-Specific Parameters in a Mixed Model for Longitudinal Measurements, Biometrics, vol.93, issue.1, pp.1-7, 2004.
DOI : 10.1016/S0167-9473(96)00047-3

E. Li, N. Wang, and N. Wang, Joint Models for a Primary Endpoint and Multiple Longitudinal Covariate Processes, Biometrics, vol.50, issue.4, pp.1068-1078, 2007.
DOI : 10.1111/j.1541-0420.2007.00822.x

P. I. Pillans, A retrospective analysis of mycophenolic acid and cyclosporin concentrations with acute rejection in renal transplant recipients, Clinical Biochemistry, vol.34, issue.1, pp.77-81, 2001.
DOI : 10.1016/S0009-9120(00)00196-X

M. Okamoto, Therapeutic Drug Monitoring of Mycophenolic Acid in Renal Transplant Recipients, Transplantation Proceedings, vol.37, issue.2, pp.859-860, 2005.
DOI : 10.1016/j.transproceed.2004.12.238

S. Satoh, The Influence of Mycophenolate Mofetil Versus Azathioprine and Mycophenolic Acid Pharmacokinetics on the Incidence of Acute Rejection and Infectious Complications After Renal Transplantation, Transplantation Proceedings, vol.37, issue.4, pp.1751-1753, 2005.
DOI : 10.1016/j.transproceed.2005.03.072

T. Pawinski, M. Durlik, I. Szlaska, A. Urbanowicz, J. Majchrnak et al., Comparison of mycophenolic acid pharmacokinetic parameters in kidney transplant patients within the first 3 months post-transplant, Journal of Clinical Pharmacy and Therapeutics, vol.47, issue.1, pp.27-34, 2006.
DOI : 10.1097/00007691-200102000-00007

T. Pawinski, The Weight of Pharmacokinetic Parameters for Mycophenolic Acid in Prediction of Rejection Outcome: The Receiver Operating Characteristic Curve Analysis, Transplantation Proceedings, vol.38, issue.1, pp.86-89, 2006.
DOI : 10.1016/j.transproceed.2005.11.084

V. W. Armstrong, M. Shipkova, E. Schütz, L. Weber, B. Tönshoff et al., Monitoring of mycophenolic acid in pediatric renal transplant recipients, Transplantation Proceedings, vol.33, issue.1-2, pp.1040-1043, 2001.
DOI : 10.1016/S0041-1345(00)02322-8

D. Abdi and Z. , Impact of longitudinal exposure to mycophenolic acid on acute rejection in renal-transplant recipients using a joint modeling approach, Pharmacological Research, vol.72, pp.52-60, 2013.
DOI : 10.1016/j.phrs.2013.03.009

URL : https://hal.archives-ouvertes.fr/inserm-00809389

Z. Zhou, J. Shen, Y. Hong, S. Kaul, M. Pfister et al., Time-Varying Belatacept Exposure and Its Relationship to Efficacy/Safety Responses in Kidney-Transplant Recipients, Clinical Pharmacology & Therapeutics, vol.58, issue.2, pp.251-257, 2012.
DOI : 10.1038/clpt.2012.84

A. K. Israni, Tacrolimus trough levels after month 3 as a predictor of acute rejection following kidney transplantation: a lesson learned from DeKAF Genomics, Transplant International, vol.91, issue.10, pp.982-989, 2013.
DOI : 10.1111/tri.12155

R. S. Gaston, Fixed- or Controlled-Dose Mycophenolate Mofetil with Standard- or Reduced-Dose Calcineurin Inhibitors: The Opticept Trial, American Journal of Transplantation, vol.27, issue.2 Suppl, pp.1607-1619, 2009.
DOI : 10.1111/j.1600-6143.2009.02668.x

C. N. Kotton, Updated International Consensus Guidelines on the Management of Cytomegalovirus in Solid-Organ Transplantation, Transplantation Journal, vol.96, issue.4, pp.333-360, 2013.
DOI : 10.1097/TP.0b013e31829df29d

K. Solez, Banff 07 Classification of Renal Allograft Pathology: Updates and Future Directions, American Journal of Transplantation, vol.23, issue.4, pp.753-760, 2008.
DOI : 10.1046/j.1523-1755.1999.00299.x

F. L. Sauvage, J. M. Gaulier, G. Lachâtre, and P. Marquet, A Fully Automated Turbulent-Flow Liquid Chromatography-Tandem Mass Spectrometry Technique for Monitoring Antidepressants in Human Serum, Therapeutic Drug Monitoring, vol.28, issue.1, pp.123-130, 2006.
DOI : 10.1097/01.ftd.0000194026.04483.c3

K. Benkali, Tacrolimus Population Pharmacokinetic-Pharmacogenetic Analysis and Bayesian Estimation in Renal Transplant Recipients, Clinical Pharmacokinetics, vol.76, issue.8, pp.805-816, 2009.
DOI : 10.2165/11318080-000000000-00000

URL : https://hal.archives-ouvertes.fr/hal-01390737

A. Prémaud, Maximum A Posteriori Bayesian Estimation of Mycophenolic Acid Pharmacokinetics in Renal Transplant Recipients at Different Postgrafting Periods, Therapeutic Drug Monitoring, vol.27, issue.3, pp.354-361, 2005.
DOI : 10.1097/01.ftd.0000162231.90811.38

L. Lindbom, J. Ribbing, and E. N. Jonsson, Perl-speaks-NONMEM (PsN)???a Perl module for NONMEM related programming, Computer Methods and Programs in Biomedicine, vol.75, issue.2, pp.85-94, 2004.
DOI : 10.1016/j.cmpb.2003.11.003

E. N. Jonsson and M. O. Karlsson, Xpose???an S-PLUS based population pharmacokinetic/pharmacodynamic model building aid for NONMEM, Computer Methods and Programs in Biomedicine, vol.58, issue.1
DOI : 10.1016/S0169-2607(98)00067-4

N. Holford, A Time to Event Tutorial for Pharmacometricians, CPT: Pharmacometrics & Systems Pharmacology, vol.43, issue.5, p.43, 2013.
DOI : 10.1023/A:1023249510224

D. Commenges, Inference for multi-state models from interval-censored data, Statistical Methods in Medical Research, vol.11, issue.2, pp.167-182, 2002.
DOI : 10.1191/0962280202sm279ra

J. J. Wilkins, M. O. Karlsson, and E. N. Jonsson, Patterns and power for the visual predictive checks [abstract] Available at:http://www.page-meeting, p.1029, 2013.

J. Parke, N. H. Holford, and B. G. Charles, A procedure for generating bootstrap samples for the validation of nonlinear mixed-effects population models, Computer Methods and Programs in Biomedicine, vol.59, issue.1
DOI : 10.1016/S0169-2607(98)00098-4

L. Lindbom, P. Pihlgren, E. N. Jonsson, and N. Jonsson, PsN-Toolkit???A collection of computer intensive statistical methods for non-linear mixed effect modeling using NONMEM, Computer Methods and Programs in Biomedicine, vol.79, issue.3, pp.241-257, 2005.
DOI : 10.1016/j.cmpb.2005.04.005

N. Holford, Time to Event analysis Diagnostic Plots [slights] Available at, p.8, 2013.