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Abstract

Background: Activating epidermal growth factor receptor (EGFR) mutations characterize a subgroup of non-small-cell

lung cancer that benefit from first line EGFR tyrosine kinase inhibitors (EGFR-TKI). However, the existence of polyclonal

cell populations may hinder personalized-medicine strategies as patients’ screening often depends upon a single

tumor-biopsy sample. The purpose of this study is to clarify and to validate in clinical testing conditions the accuracy

of EGFR genotyping using different tumor sites and various types of samples (transthoracic, surgical or endoscopic

biopsies and cytology specimens).

Methods: We conducted a retrospective review of 357 consecutive patients addressed for EGFR mutation screening

in accordance with the directive of the European Medicines Agency (stage IV NSCLC). Fifty-seven samples were EGFR

mutated and 40 had adequate tumor specimens for analysis on multiple spatially separated sites. Ten wild type

samples were also analyzed. A total of 153 and 39 tumor fragments, from mutated and non-mutated cases respectively,

were generated to analyze tumor heterogeneity or primary-metastatic discordances. After histological review of all

fragments, EGFR genotyping was assessed using the routine diagnostic tools: fragment analysis for insertions and

deletions and allele specific TaqMan probes for point mutations. EGFR copy number (CN) was evaluated by qPCR

using TaqMan probes.

Results: The identification of EGFR mutations was independent of localization within primary tumor, of specimen

type and consistent between primary and metastases. At the opposite, for half of the samples, tumor loci showed

different EGFR copy number that may affect mutation detection cut-off.

Conclusions: This is the largest series reporting multiple EGFR testing in Caucasians. It validates the accuracy of

EGFR mutation screening from single tumor-biopsy samples before first line EGFR-TKI. The unpredictable variability

in EGFR CN and therefore in EGFR wild type/mutant allelic ratio justifies the implementation of sensitive methods

to identify patients with EGFR mutated tumors.
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Introduction
Lung carcinoma is the first cause of death by cancer in

the world, mostly because patients have an advanced

stage disease at diagnosis [1]. Adenocarcinoma (ADC),

the most frequent histological type is morphologically

and biologically heterogeneous. Different architectural

patterns have been described and different molecular

pathways are involved in the carcinogenesis process [2].

Attention has largely been focused on proliferation path-

ways with the identification of mutations in oncogenes

such as KRAS, EGFR, ALK, HER2, PI3KCA and BRAF

that are potential or validated drug targets [3]. The first

identified target in NSCLC was the EGF receptor. In

2004, EGFR activating mutations were identified in lung

ADC and rapidly associated with response to EGFR-TKI

[4,5]. Clinico-pathological features that correlate with

these mutations include east-Asian ethnicity, adenocar-

cinoma histology, female sex, and never smoking history.

In lung cancer the prevalence of EGFR mutations varies

from 10% in Caucasians to more than 40% in Asian pop-

ulations [6]. They are mainly located in the tyrosine kin-

ase domain and 90% consist of either small deletions in

exon 19 (DEL19) or a missense mutation in codon 21

that changes the leucine 858 in an arginine (p.L858R).

Concerning rare alterations, about 3% of the mutations

occur at codon 719, resulting in the substitution of gly-

cine by a cysteine, alanine or serine (p.G719X) or at

codon 861 (p.L861Q) [7,8]. In addition, there are rare 1

to 2% in-frame insertion mutations in exon 20 [9]. The

predictive value of frequent alterations (DEL19 and p.

L858R) is more or less equivalent but some studies have

reported a higher sensitivity and longer PFS for patients

with DEL19 mutated NSCLC [10]. Concerning rare al-

terations, sensitivity to EFGR-TKI and PFS are globally

lower [11]. In 2010, results from large phase III trial led

to the restriction of EGFR tyrosine kinase inhibitors to

EGFR mutated tumors in first line treatment [12]. EGFR

mutational status has therefore became mandatory to

determine which therapy will be the most appropriate to

patients with stage IV diseases. In this context, genetic

heterogeneity is an obstacle to correct determination of

EGFR status on small biopsies specimens. Previous stud-

ies showed that the EGFR mutation status was discord-

ant in different parts of the tumor or between primary

or secondary metastatic sites [13-16]. At the opposite,

Yatabe et al showed in a series of Asiatic patients that

discordant cases where extremely rare [17] and it was

suggested that discrepancies regarding EGFR mutations

distribution could be due to methodological procedures

[16-18]. If EGFR genotyping results depend on sample

types it will negatively impact treatment decisions. In

Caucasians, EGFR molecular status at various tumor

sites remains to be examined in standard testing condi-

tions to validate EGFR molecular testing as a diagnostic

tool. Finally, EGFR mutational heterogeneity could also

explain the occurrence of secondary EGFR-TKI resis-

tances. Patients undergoing EFGR-TKI treatments will

ultimately relapse. Recurrences are related to various

mechanisms among which the emergence of EGFR p.

T790M clones seems to be the most frequent. This al-

teration, present as a minor sub-clone before treatment

seems selected by EGFR-TKI treatments [19]. Most

methods used for molecular diagnostic are not sensitive

enough to detect minor p.T790M subclones (<1%) and

this alteration is rarely identified in untreated patients. In-

deed, the reported frequency of baseline EGFR p.T790M

mutations varies widely in the literature, ranging from 1%

of all EGFR-mutant lung cancers [11] to 35% of all EGFR-

mutant lung cancers [20] and depends of the sensitivity of

the assays used and their ability to identify minor clones

within a tumor. The prognostic significance of baseline

EGFR p.T790M has not been reported. In the acquired re-

sistance setting, it has been demonstrated that the presence

of p.T790M predicts a favorable prognosis and indolent

progression, compared to the absence of p.T790M after

TKI failure [19].

Because no large Caucasian series was tested for EGFR

genetic heterogeneity, we addressed this question in clin-

ical testing conditions thanks to a French nationwide

EGFR mutation characterization program in advanced

lung cancer (National Cancer Institute, INCa).

The aim of this study was to answer several questions

of clinical relevance: -i- is EGFR mutation distribution,

including p.T790M, heterogeneous within the primary

tumor?; -ii- is EGFR mutation distribution heteroge-

neous between the primary tumor and thoracic metasta-

ses ?; -iii- Are microbiopsy or cytology samples suitable

for EGFR screening? and iiii- is EGFR copy number het-

erogeneous within the tumor?

Patients and methods
Patients

We studied 357 consecutive patients with adenocarcin-

oma that had EGFR testing for clinical purpose at the

Hôtel Dieu Hospital from January 2010 to June 2011 in

accordance with the directive of the European Medicines

Agency (stage IV NSCLC tested before EGFR-TKI treat-

ment). We found that 57 patients out of 357 had EGFR

mutated tumors (15.9% of the entire series). For 40 patients

we had enough tissues available for a multi-localization

screening. No concomitant KRAS or HER2 alteration was

identified on those samples. To rule out possible genotyp-

ing errors at time of diagnosis, we also tested 10 EGFR,

KRAS and HER2 wild type (WT) adenocarcinomas. This

study was reviewed and approved by the local ethic com-

mittee (Comité de Protection des Personnes/CPP 2012 06-

12). Patients’ characteristics are shown in Table 1 and are in
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accordance with previous reports on EGFR mutated Cauca-

sian series [21,22].

Samples

All EGFR mutated adenocarcinomas had thyroid transcrip-

tional factor (TTF1) nuclear expression (Novocastra, clone

SPT24). The 22 surgical resections were classified accord-

ing to the IASLC/ATS/ERS recommendation [23].

A total of 153 tumor fragments from 40 patients were

selected by two pathologists (MLA and DD): 5 bronchial

biopsies, 2 bronchial aspirations, 5 tomography-guided

needle lung biopsies, 8 pleural effusions, 33 metastatic

pleural localizations, 83 pulmonary surgical samples

(lobectomy and wedge resections) and 17 lymph-nodes

specimens. For each patient 2 to 19 loci were generated

consisting of different localizations (primary and meta-

static sites) or subdivision of the tumor tissue into

small parts to analyze EGFR mutation at different sites,

with different tumor cell content and different archi-

tectural patterns (Table 2, Additional file 1: Table S1).

We called “small specimens”: cytology (pleural effusions or

bronchial aspiration) or small biopsy (tomography-guided

needle lung biopsies or bronchial biopsies). Concerning

wild type samples 39 fragments from 10 patients were gen-

erated, including 3 adrenal glands, 6 lymph-nodes, 2 pleural

metastases and 28 fragments from the primary tumors. All

contained more than 50% tumor cells to rule out possible

mutant allele dilution (Additional file 2: Table S2).

In order to fit to the usual clinical practice of our path-

ology department, EGFR mutations were analyzed in a rep-

resentative tumor area, without microdissection procedure.

All samples (153 from EGFR mutated tumors, 39 from wild

type samples) were reviewed for tumor cell content at

x100 magnification (HES staining) by pathologists

(MLA and DD) for 26 out of the 153 samples had low

tumor cell contents (Additional file 1: Table S1 and

Additional file 2: Table S2).

Molecular analysis

Genomic DNA was extracted from 20 μm-thick formalin-

fixed paraffin-embedded blocks using illustra™ DNA

extraction kit BACC2 (GE Healthcare), according to

the manufacturer's instructions. EGFR mutations were

analyzed using locally validated tests [24]. In the diag-

nostic setting, our screening strategy is to test EGFR

exon 19 deletions (DEL19), exon 20 insertions (INS20)

and the p.L858R mutation along with KRAS and HER2

exon 20 insertions. Non-mutated samples are subse-

quently analyzed for EGFR codons 719, 861 and mu-

tated samples for EGFR p.T790M. The 153 fragments

generated from mutated samples were analyzed for the

mutation found at initial diagnosis, the 39 fragments

from non-mutated cases were tested for the entire EGFR

mutation panel (DEL19, INS20, p.L858R, p.L861Q and

p.G719X).

Deletions and insertions were detected using fragment

analysis with a FAM-labeled primer, run on an ABI 3730

XL (Applied biosystems, Foster City, CA) and analyzed

with Genemapper software (Applied biosystems). Frag-

ment analysis has a detection cut-off of 5-10% mutated/

wild type allele ratio. Samples with an expected DEL19 that

were found wild-type (n = 3) using fragment analysis were

subsequently re-analyzed by TaqMan® Mutation Detection

assays based on Competitive Allele Specific TaqMan PCR

technology (CAST). Point mutations: p.L861Q, p.G719A,

p.G719C, p.G719S, p.L858R and p.T790M were analyzed

using similar technology. CAST probes were not available

to test INS20 mutations. Allele specific assays were run in

a final volume of 5 μl in 384 wells plate including 2.5 μl of

2X TaqMan® genotyping master mix (Applied Biosystems),

0.5 μl of 10X Assay Mix (Hs00000173_rf :EGFR_rf;

Hs00000141_mu :EGFR_6213_mu; Hs00000104_mu: EGFR_

6239_mu; Hs00000148_mu: EGFR_6253_mu; Hs00000146_

mu: EGFR_6252_mu; Hs00000106_mu: EGFR_6240_mu;

Hs00000102_mu: EGFR_6224_mu; Hs00000228_mu: EGFR

ex19dels_mu from Lifetechnologies) and 1μl DNA template

(≤20ng/μl). Runs were performed in duplicates on an ABI

Prism 7900 HT sequence detection system (Applied Biosys-

tems) using the following thermo cycling conditions: 95°C/

10 m (92°C/15 s, 58°C/1 m) for 5 cycles, then (92°C/15 s,

60°C/60 s) for 40 cycles and analyzed with the SDS 2.0 soft-

ware program (Applied Biosystems). qPCR analyses have a

detection cut-off of 1-2% mutated/wild type allele ratio [24].

Direct sequencing was run on a subset of samples as previ-

ously described [25].

Table 1 Clinical characteristics of patients with EGFR

mutated lung adenocarcinoma

Gender

Male 13

Female 27

Age (years) Mean 64 [42 – 81]

Tobacco status

≤ 10 Pack per year 15

> 10 Pack per year 14

unknown 11

TNM stage at initial diagnosis*

I 4

II 4

III 9

IV 20

Unknown 3

Shows the clinical characteristics of patients with an EGFR mutated

adenocarcinoma. Patients mentioned with stage 1 or 2 tumors have relapsed.

EGFR testing was done using the available material (diagnostic samples) at

time of relapse.
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Table 2 Multi-localization EGFR genotyping screening

Number and type of samples analyzed per patients EGFR genotyping results

Patients Mutation type
Primary tumor (sugical sample,
lung biopsy*, bronchial biospy£)

PLEURAL
BIOPSY

LYMPH
NODE

Cytology: Pleural
Effusion, Bronchial
aspiration*

Contributive
samples

Concordant
EGFR status

Non contributive
samples Discordant EGFR status

P1 del19 7 0 0 0 7 7 0

P2 del19 2 0 0 0 2 2 0

P3 del19 0 3 0 1 4 3 0 1 (rescued by CAST PCR)

P4 del19 0 4 0 1 5 5 0

P5 del19 0 3 0 1 4 4 0

P6 del19 1* + 1* 0 0 0 2 2 0

P7 del19 0 0 0 2 2 2 0

P8 del19 1* + 1* 0 0 0 2 2 0

P9 del19 3 1 0 0 4 4 0

P10 del19 0 3 0 0 3 3 0

P11 del19 0 3 0 0 3 3 0

P12 del19 0 3 0 0 2 2 1

P13 del19 4 0 0 0 4 4 0

P14 del19 2 0 0 0 2 2 0

P15 del19 0 2 0 1 3 3 0

P16 del19 1£ + 1£ 0 0 1* 3 1 0 2 (remained WT by CAST PCR)

P17 del19 3 0 0 0 3 3 0

P18 del19 0 0 1 1* 1 1 1

P19 del19 1 + 1* 0 0 0 2 2 0

P20 p.G719A 1 0 4 0 5 5 0

P21 p.G719A 5 0 2 0 7 7 0

P22 ins20 3 0 1 0 4 4 0

P23 ins20 0 2 0 0 2 2 0

P24 ins20 3 0 2 0 4 4 1

P25 ins20 0 2 0 0 2 2 0

P26 ins20 3 0 0 0 3 3 0

P27 ins20 2 + 1 0 1 + 1 0 4 2 1 2

P28 p.L858R 4 0 2 0 6 6 0

P29 p.L858R 1£ + 1£ 0 0 0 2 2 0
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Table 2 Multi-localization EGFR genotyping screening (Continued)

P30 p.L858R 2 0 0 0 2 2 0

P31 p.L858R 3 0 0 0 3 3 0

P32 p.L858R 0 3 0 1 4 4 0

P33 p.L858R 0 3 0 0 3 3 0

P34 p.L858R 1£ 1 0 1 3 3 0

P35 p.L858R 4 0 2 0 6 6 0

P36 p.L858R 2 0 1 0 3 3 0

P37 p.L858R 3 0 0 0 3 3 0

P38 p.L858R 3 0 0 0 3 3 0

P39 p.L858R 3 0 0 0 3 3 0

P40 p.L861Q/p.T790M 19 0 0 0 19 19 0

Shows the type and number of samples tested for EGFR mutation in 40 patients. Non-contributive samples are non-amplified specimens. Discordant samples are DNAs that have been found wild type when a mutation

was expected. The discordant samples are written in italic. Lung biopsy: *and bronchial biopsy: £.
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EGFR copy number

EGFR copy number was assessed by real time quantita-

tive PCR using TaqMan® copy number assays. Three

probes were selected, in intron1, on intron7-exon8 and

exon29-intron29 boundaries (Hs04960197_cn; Hs016463

07_cn; Hs00458616_cn). TaqMan® Copy number reference

assay RNase P was used as internal control and calibration

was done using non-tumor formalin fixed paraffin embed-

ded (FFPE) tissues. Samples were run in triplicates, the

maximum difference tolerated between triplicates to

calculate the average cycle threshold (Ct) was 0.3.

EGFR copy number was given by the formula 2-ddct as

described previously [26]. Increased copy number was

defined by a CNV > 2.5. Cell lines with known copy

number variations (CNV) were used as controls. FFPE

samples with RNase P Ct over 30 were not used for copy

number quantification and qualified as non-contributive

samples.

Results
1- EGFR mutation status on multiple spatially separated

samples:

From January 2010 to March 2011, 357 patients man-

aged at the Hotel-Dieu hospital for lung cancer had

EGFR testing for clinical purpose. Among the 57 EGFR

mutated tumors, 40 patients had enough available tissue

for multiple EGFR testing. Nineteen patients had an

exon 19 deletion (DEL19), 12 a p.L858R point mutation,

6 an exon 20 insertion (INS20), 2 a p.G719A mutation

and 1 a p.L861Q/p.T790M double alteration. For those

40 patients, 153 DNA samples were extracted from vari-

ous tumor localizations and reanalyzed for the initial al-

teration. Four samples could not be amplified (2 DEL19

and 2 INS20 tumors). The initial EGFR mutation was

identified in 144 of the 149 informative samples. Five

samples with an expected DEL19 (n = 3) or INS20 (n = 2)

were found wild type. For those 5 cases, 2 cytologic speci-

mens (pleural effusion and bronchial aspiration), 1 small

endobronchial biopsy and 2 surgical specimens, the propor-

tion of tumor cells was low, ranging from 2% to less than

10%. One specimen (P3) was rescued by DEL19-CAST

probes while both samples from P16 remained wild type

(Table 2). CAST probes were not available to test INS20.

There was no discordance for samples with expected p.

L858R, p.L861Q/p.T790M or p.G719A mutations (Table 2

and Additional file 1: Table S1).

All specimens were tested for the p.T790M mutation.

This alteration was identified in one tumor (P40). Pa-

tient was naïve of EGFR-TKI, the tumor was p.L861Q/

p.T790M mutated, was divided into 19 parts and

both mutations were homogeneously distributed with

similar allele intensity (Additional file 1: Table S1).

Samples that were initially diagnosed EGFR wild-type,

were found wild-type on all sub-specimens (Additional

file 2: Table S2).

2- Concordant EGFR mutation status was found within

the tumor, and between primary and thoracic metastasis.

In our series, 22/40 patients had surgical resection for

adenocarcinoma allowing classification according the

IASLC/ATS/ERS recommendations [2]. All architectural

patterns were represented except the mucinous pattern.

Most tumors had a lepidic counterpart (9/22) but it was

not necessary the predominant pattern (Additional file 1:

Table S1). For these 22 adenocarcinomas, we analyzed

different tumor area, displaying similar or different archi-

tectural patterns and no EGFR heterogeneity was seen

within these specimens.

For 10 patients we analyzed both primary tumor and

lymph node metastases (n = 8) or pleural metastases

(n = 2). A single discordant result was found between

the primary tumor (INS20 mutation) and one meta-

static lymph node containing 15% of tumor cells. For

this patient, the mutation was present in the other

lymph node metastasis (P27, Table 2, Additional file 1:

Table S1).

Two patients showed a pre-invasive lesion (atypical aden-

omatous hyperplasia and in situ adenocarcinoma) located

at distance of the invasive adenocarcinoma. These pre-

invasion lesions had the same EGFR mutation as the inva-

sive counterpart (Additional file 1: Table S1).

3- Microbiopsy and cytology samples allow EGFR mu-

tation analysis.

Twenty non-surgical specimens (8 pleural effusions, 2

bronchial aspirations, 5 tomography-guided needle lung

biopsies, 5 bronchial biopsies) were analyzed including 8

with less than 15% tumor cells. Nineteen samples were

contributive, 16 were EGFR mutated and 3 were wild

type: 1 pleural effusion, 1 bronchial aspirate and 1 bron-

chial biopsy with 5, 5 and 10% tumor cell content re-

spectively (Table 2).

4- Determination of EGFR copy number.

EGFR copy number (CN) was available in 132/153

samples. In this series, 26/132 samples had an EGFR

CN > 2.5 and 2 an EGFR CN >5. Half of the patients

(18/40) had at least one sample showing an increased

EGFR CN but only one patient had homogeneous copy

number increase on all fragment analyzed (CN >4 on 3

pleural biopsy fragments, P11) (Table 3).

Concerning specimens with very low tumor cell con-

tent (≤10%, n = 25), 5 were found wild type and 2 were

non informative, none of these 7 specimens had an in-

creased EGFR CN. At the opposite, among the mutated

specimens with low tumor cell content 4 /18 had a

CN ≥ 2.5 suggesting that EGFR CN impacts on mutation

detection for low tumor cell content specimens.

We next examined whether increased EGFR CN was

associated with specific morphologic features. In our
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Table 3 Multi-localization EGFR CNV screening

Number and type of samples
analyzed per patients

EGFR CNV results

Patients Mutation type
Primary tumor (sugical sample,
lung biopsy*, bronchial biospy£

Pleural
biopsy

Lymph
node

Cytology: Pleural effusion,
Bronchial Aspiration*

EGFR CNV
≥ 2.5

EGFR CNV
< 2.5

Non contributive
samples

P1 del19 7 0 0 0 5 2

P2 del19 2 0 0 0 2

P3 del19 0 3 0 1 3 1

P4 del19 0 4 0 1 1 3 1

P5 del19 0 3 0 1 1 3

P6 del19 1* + 1* 0 0 0 1 1

P7 del19 0 0 0 2 1 1

P8 del19 1* + 1* 0 0 0 1 1

P9 del19 3 1 0 0 1 3

P10 del19 0 3 0 0 1 2

P11 del19 0 3 0 0 3

P12 del19 0 3 0 0 1 2

P13 del19 4 0 0 0 4

P14 del19 2 0 0 0 2

P15 del19 0 2 0 1 3

P16 del19 1£ + 1£ 0 0 1* 1 2

P17 del19 3 0 0 0 1 1 1

P18 del19 0 0 1 1* 1 1

P19 del19 1 + 1* 0 0 0 1 1

P20 p.G719A 1 0 4 0 1 2 2

P21 p.G719A 5 0 2 0 6 1

P22 ins20 3 0 1 0 2 2

P23 ins20 0 2 0 0 2

P24 ins20 3 0 2 0 4 1

P25 ins20 0 2 0 0 1 1

P26 ins20 3 0 0 0 3

P27 ins20 2 + 1 0 1 + 1 0 4 1

P28 p.L858R 4 0 2 0 6

P29 p.L858R 1£ + 1£ 0 0 0 1 1

P30 p.L858R 2 0 0 0 2
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Table 3 Multi-localization EGFR CNV screening (Continued)

P31 p.L858R 3 0 0 0 3

P32 p.L858R 0 3 0 1 2 2

P33 p.L858R 0 3 0 0 1 1 1

P34 p.L858R 1£ 1 0 1 1 2

P35 p.L858R 4 0 2 0 6

P36 p.L858R 2 0 1 0 2 1

P37 p.L858R 3 0 0 0 2 1

P38 p.L858R 3 0 0 0 1 2

P39 p.L858R 3 0 0 0 2 1

P40 p.L861Q/p.T790M 19 0 0 0 18 1

Shows the type and number of samples tested for EGFR copy number variation (CNV) in 40 patients. Non-contributive samples are non-amplified specimens or samples with Ct >30.

Lung biopsy: * and bronchial biopsy: £.
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experience, there was no clear association with high-

grade lesions (solid or micropapillary predominant pat-

terns) but in one patient, high EGFR CN was found in

the solid pattern and not in the lepidic counterpart

(Figure 1). At the opposite, 1 out of the EGFR mutated

precursor lesions (in situ adenocarcinoma and atypical

adenomatous hyperplasia), had an increased EGFR CN

(CN: 3.4). No EGFR copy number increase was found in

EGFR wild type tumor samples.

Discussion
Tyrosine kinase inhibitors (TKI) have changed advanced

EGFR mutated lung carcinoma clinical practice with glo-

bal improved short-term survival and fewer side effects

[27]. In routine clinical practice EGFR mutation screen-

ing is mandatory to decide which first line treatment

would be the most appropriate [28,29]. Heterogeneous

repartition of EGFR mutations within tissue or between

different metastatic sites is an obstacle to accurate molecu-

lar screening. It was reported in different studies and re-

mains an important question for clinicians [13-15,30-32].

Table 4 summarizes previous works and compared samples

and technologies. Main differences are, the inclusion of

various cancer types including squamous-cell cancers that

are not targets for EGFR-TKI treatments or pre-treated

samples, different proportion of smokers, different types of

metastatic site and finally different technologies and differ-

ent panels of mutations tested. It seems that higher propor-

tion of smokers, heterogeneous tumors specimens and the

use of low sensitivity methods yielded to higher rates of in-

consistencies in EGFR mutation results [33,34]. Moreover

lower rates of concordance are also found for rare EGFR

variants [34,35]. It seems therefore important to analyze in

a series of patients prospectively tested for EGFR mutation

in clinical settings, the impact of heterogeneity on diagno-

sis. Indeed, non-surgical specimens from either the primary

or metastatic site often constitute the only tissue available

for molecular diagnosis in patients eligible for TKI with ad-

vanced stage cancers [13,30,32,36,37]. Are these small spec-

imens reliable for molecular testing? We addressed this

question in Caucasian patients with EGFR mutated lung tu-

mors. Multiple samples were obtained either from different

localizations or different loci within the primary tumor. As

expected in Caucasians, the frequency of EGFR mutated

tumor was 15% [38]. The p.T790M resistance mutation

was studied in all patients (153 specimens) that were

P
1

A

HES Fragment analysis EGFR copy number

P
1

B

EGFR probe

REF probe

EGFR probe

REF probe

WT

del

del

WT

Ct EGFR: 26,74 ; Ct Ref: 27,46 ; CNV: 1,89

Ct EGFR: 25,68 ; Ct Ref: 27,31 ; CNV: 3,44

1 2 3

Figure 1 Illustration of the different patterns of EGFR DEL19 mutation, EGFR CN analyses and the associated histological features for

patient P1. -1- HES staining at x100 magnification, P1A : lepidic pattern, P1B: solid pattern. -2- Fragment analysis for EGFR DEL19 mutation. -3-

EGFR copy number evaluation. In sample A with lepidic pattern, mutation was validated by a cast PCR assay and there is no increased copy

number of EGFR gene (CNV:1.89). In sample B with solid pattern, EGFR amplification was identified (CNV: 3.44).
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Table 4 Summary of previously published series

Article Histological
subtype

No of samples Smoking
status

Concordance PT/M Analysis within PT Concordance
within PT

Method Mutation
type

Metastatic
sites

Yatabe
et al. 2011
[17]

ADC (77) 77 100 qPCR L858R Lymph
nodes

Fragment analysis DEL19

INS20

719X

Sun et al.
2011 [37]

ADC (39), SCC
(31), ADSQ (6),
LCC (4)

80 Ever (49) Direct sequencing all Lymph
nodes

Never (31)

Global 92,5% (74/80)

Wei et al.
2014 [41]

ADC (49) 50 Ever (10) 80% qPCR (commercial
kit)

45
hotspots

Lymph
nodes

SCC (1)
Never (40) 97,5%

Global 93% (47/50)

Bai et al.
2013 [36]

ADC (63) 85 (45 EGFRmt 40 EGFRwt) 1431 foci 87,1% ARMS DXS EGFR
mutation
Kit

SCC (10) 1238 foci (foci : capture
with laser
microdissection 0,1cm2)

4 cases with 5% -
8% of foci showing
mutations

ADSQ (5)

Other (7)

Chang et al.
2011 [42]

ADC (34) 56 (27 EGFRmt) Ever (29) 62% Direct sequencing all Lymph
nodes

SCC (17)

ADSQ (1) Never (23) 70%

Other (1) Unknown (4)

Global 68% (38/56)

Schmid
et al. 2009
[33]

ADC (96) 96 (7 EGFRmt) Ever (74) Direct sequencing L858R (3) Lymph
nodes

DEL19 (3)

Never (22) INS20 (1)

Global 14% (1/7)

Gow et al
2009 [34]

ADC (42) 67 (35 EGFRmt) Ever (26) Direct sequencing
and ARMS for
discordant results

all Brain (25)

SCC (21) Bone (20)

ADSQ (0) (19 with adjuvant treatment
before molecular analysis on
metastatic site)

Never (41) Other (22)

Other (4) Global 26% (9/35) seq and 57 %
(20/35) ARMS
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Table 4 Summary of previously published series (Continued)

Mattsson
et al. 2012
[18]

ADC (6) 6 3 foci per tumor
(distinct
morphologies)

100% Direct sequencing L858R and
DEL19

Kalikaki
et al. 2008
[35]

ADC (20) 25 (7 EGFRmt) Ever (22) Direct sequencing all Brain (3)

SCC (2) Pleura (5)

ADSQ (0) (17 with adjuvant treatment
before molecular analysis on
metastatic site)

Never (3) Lung (9)

Other (3) Global 14% (1/7) 5 mutations are
rare alterations (codons
692-847-746-857)

Adrenal
gland (3)

Bone (2)

Skin (1)

Liver (1)

Matsumoto
et al. 2006
[43]

ADC (19) 19 (12 EGFRmut) 100% Direct sequencing L858R,
DEL19

Brain (19)

Yatabe
et al. 2011
[17]

ADC (50) 50 EGFRmt 3 foci per tumor (50) 100% qPCR L858R

Fragment analysis DEL19

100 foci per tumor (5) 100%

Schematic review of previously published series comparing primary tumor and metastasis or different loci within primary tumor. Tumor type, smoking status, detection methods, mutation tested and metastatic sites

are given. PT : primary Tumor, M: metastasis, ADC: adenocarcinoma, SCC: squamous cell carcinoma, ADSQ : adenosquamous carcinoma, LCC: large cell carcinoma mt: mutated, wt : wild type, ARMS: amplification

refractory mutation system.
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EGFR-TKI naïve. In untreated patient, the p.T790M muta-

tion is usually described as a subclonal alteration that is dif-

ficult to identify even with highly sensitive methods [39].

Here the alteration was found once concomitantly to a p.

L861Q mutation, both alleles were equally represented and

the distribution was homogeneous suggesting that in this

case, the p.T790M alteration is a driver mutation altogether

with the p.L861Q. Routine EGFR testing gives a qualitative

analysis of EGFR mutations, tumor is either mutated or

non-mutated and the proportion of mutated allele is not

taken into consideration. Using this definition, we found

that 149/153 samples were contributive; among these 149

samples, only 5 showed a discordant genotype (WT/M).

Discordant results were from low tumor cell content speci-

mens expected to be either DEL19 or INS20. Fragment

analysis, the method used to detect these alterations has a

higher detection threshold as compared to allelic discrimin-

ation (10% versus 1%) [24], suggesting that these results

might be false negative. Among the samples that could be

tested using the DEL19 TaqMan® Mutation Detection assay

one was found positive while both specimens from patient

P16 remained negative. This patient had 2 primary cancers,

concomitant adenocarcinoma and squamous cell cancer.

Initial EGFR mutation was found on a bronchial biopsy

sample showing an ADC, a second biopsy and the bron-

chial aspiration were found EGFR wild type even though

high sensitivity CAST PCR was used. For this patient, the

existence of 2 cancers might explain the presence of EGFR

mutated and non-mutated samples. Indeed diagnosis on

small specimens may be equivocal. To validate the accuracy

of EGFR wild type status, 10 patients with a diagnosis of

EGFR wild type tumor were re-analyzed at different loci.

No EGFR alteration was found (mutation or increased CN).

It suggests that negative results can be trusted as long as

the method detection cut-off matches the tumor cell con-

tent. Although our work cannot rule out the existence of

minor wild type subclones, we believe that any sample al-

lows accurate EGFR mutations detection at initial diagnos-

tic. This fits the results of Yatabe et al [17]. However,

discrepancies may be increased by the use of low sensitivity

methods such as sequencing. In this work, 38 samples were

analyzed by direct sequencing. We found 23 concordances,

3 discordances and 12 informative sequences because of

high background noise. We stopped the comparison as this

method is not used in diagnosis in our lab and was shown

to be inappropriate for biopsy or cytology FFPE samples.

Indeed results depend on the estimation of the tumor cell

content, on the method’s detection cut-off and on EGFR

copy number. What threshold of tumor nuclei should we

use? It is assumed that more than 50% of tumor cells allows

accurate molecular testing and that samples under 10%

may lead to false negative results [40]. Between 10% and

50% the reliability depends on the laboratory experience.

Interestingly, we had detectable EGFR mutations in 18/23

contributive samples with ≤ 10% of tumor cells. It highlights

the fact that if a positive result can be found in a sample

with low tumor content, negative results have to be vali-

dated according to the specimen’s tumor content. Pleural

metastatic evolution is frequent in lung cancer and pleural

effusion and/or tissue are convenient materials for molecu-

lar biology.

We secondly tested whether EGFR CN increase could

explain why EGFR mutation assessment, remain possible

for cases with very few tumor cells. We found that EGFR

copy number was heterogeneous between different frag-

ments from the same tumor. Thus, the allelic ratio of

each specimen depends not only on the tumor cell con-

tent but also on the EGFR copy number and on the

number of mutated allele in tumor cells. In clinical set-

tings the proportion of EGFR mutated cells or the pres-

ence of an associated increased copy number, which is

frequent in EGFR mutated tumors, is not taken into ac-

count. In samples with various tumor cell contents and

various EGFR gene copy number the quantification of

the mutated allele/wild type allele ratio is difficult. It is

clear to us that this ratio varies between tumor sites and

that low tumor cell content specimens are rescued by

the presence of a high mutant/wild type allele ratio. At

the opposite, high tumor cell content specimens may

show low mutant/wild type allele ratio estimated by the

intensity of the mutant probe signal. This variability may

explain discrepancies between series using different de-

tection strategies or using microdissection of very few

tumor cells as PCR amplifications in those conditions

may lead to amplification errors [44]. However, it would

be important to set up assays to analyze the allelic ratio’s

impact on response to treatment. One other question

was the link between histology and EGFR mutation or

CN. In our experience, no difference in EGFR mutation

status was found according to adenocarcinoma architec-

tural patterns. This is in accordance with a report on a

small series of samples (n = 11) from a Swedish group

[18]. As already reported EGFR copy number was vari-

able within the same tumor and may vary according to

the architectural pattern [17,45]. Here, for one tumor,

EGFR increased copy number was restricted to the solid

counterpart as compared to lepidic pattern. But this

could not be generalized as other solid or micropapillary

predominant pattern tumors had no EGFR CN increase

and at the opposite a preinvasive lesion showed a high

EGFR copy number. Finally, our results suggested that

the role of EGFR amplification in cancer progression

might not be directly linked to the histological tumor

grade.

Patients undergoing EGFR TKI treatment will develop

resistance after several months. Heterogeneity has been

described as a phenomenon that could drive secondary

resistance. Issues are either the development of a
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p.T790M or a wild type subclone [15,30,39]. In our

series, there was no p.T790M heterogeneity. Considering

that our detection method (CAST-PCR) can detect ap-

proximately 1 to 2% of mutated alleles in a background

of wild type this might not have been sufficient for p.

T790M subclone detection [24]. It was also suggested

that secondary resistances might be due to EGFR muta-

tion loss. Our study was not designed to detect the pres-

ence of EGFR wild type subclones however, if this wild

type tumor cell population exists, it is not an obstacle to

initial EGFR molecular diagnosis defined by the qualita-

tive presence of the EGFR mutation.

Conclusions
This retrospective series reports multiple EGFR testing

in lung cancer in routine diagnostic conditions and vali-

dates that molecular testing from single tumor-biopsy

sample before first line EGFR-TKI may be conducted on

any specimens. This is an important result for clinical

practice, it indicates that EGFR testing is relevant on bi-

opsies, cytological samples, lymph nodes and metastatic

sites using standardized and validated procedures with a

defined detection cut-off. This existence of multiple pri-

mary tumors with possible distinct genotypes needs to

be considered and the development of sensitive methods

is recommended because the wild type/mutated allele

ratio is unpredictable. Finally, the clinical impact of the

associated EGFR copy number increase in a subset of

samples remains to be evaluated.
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