F. Backhed, Programming of Host Metabolism by the Gut Microbiota, Annals of Nutrition and Metabolism, vol.58, issue.s2, pp.44-52, 2011.
DOI : 10.1159/000328042

J. K. Nicholson, E. Holmes, J. Kinross, R. Burcelin, G. Gibson et al., Host-Gut Microbiota Metabolic Interactions, Science, vol.336, issue.6086, pp.1262-1267, 2012.
DOI : 10.1126/science.1223813

URL : https://hal.archives-ouvertes.fr/inserm-00726159

P. J. Turnbaugh, R. E. Ley, M. A. Mahowald, V. Magrini, E. R. Mardis et al., An obesity-associated gut microbiome with increased capacity for energy harvest, Nature, vol.20, issue.7122, pp.1027-1031, 2006.
DOI : 10.1038/nature05414

S. R. Gill, M. Pop, R. T. Deboy, P. B. Eckburg, P. J. Turnbaugh et al., Metagenomic Analysis of the Human Distal Gut Microbiome, Science, vol.312, issue.5778, pp.1355-1359, 2006.
DOI : 10.1126/science.1124234

R. Burcelin, M. Serino, C. Chabo, V. Blasco-baque, and J. Amar, Gut microbiota and diabetes: from pathogenesis to therapeutic perspective, Acta Diabetologica, vol.139, issue.8, pp.257-273, 2011.
DOI : 10.1007/s00592-011-0333-6

URL : https://hal.archives-ouvertes.fr/inserm-00756652

F. Backhed, H. Ding, T. Wang, L. V. Hooper, G. Y. Koh et al., The gut microbiota as an environmental factor that regulates fat storage, Proceedings of the National Academy of Sciences, vol.101, issue.44, pp.15718-15723, 2004.
DOI : 10.1073/pnas.0407076101

B. W. Parks, E. Nam, E. Org, E. Kostem, F. Norheim et al., Genetic Control of Obesity and Gut Microbiota Composition in Response to High-Fat, High-Sucrose Diet in Mice, Cell Metabolism, vol.17, issue.1, pp.141-152, 2013.
DOI : 10.1016/j.cmet.2012.12.007

F. Backhed, J. K. Manchester, C. F. Semenkovich, G. , and J. I. , Mechanisms underlying the resistance to diet-induced obesity in germ-free mice, Proceedings of the National Academy of Sciences, vol.104, issue.3, pp.979-984, 2007.
DOI : 10.1073/pnas.0605374104

F. Laugerette, C. Vors, A. Geloen, M. A. Chauvin, C. Soulage et al., Emulsified lipids increase endotoxemia: possible role in early postprandial low-grade inflammation, The Journal of Nutritional Biochemistry, vol.22, issue.1, pp.53-59, 2011.
DOI : 10.1016/j.jnutbio.2009.11.011

URL : https://hal.archives-ouvertes.fr/inserm-00486697

J. Amar, R. Burcelin, J. B. Ruidavets, P. D. Cani, J. Fauvel et al., Energy intake is associated with endotoxemia in apparently healthy men, American Journal of Clinical Nutrition, vol.87, pp.1219-1223, 2008.

P. J. Pussinen, A. S. Havulinna, M. Lehto, J. Sundvall, and V. Salomaa, Endotoxemia Is Associated With an Increased Risk of Incident Diabetes, Diabetes Care, vol.34, issue.2, pp.392-397, 2011.
DOI : 10.2337/dc10-1676

P. D. Cani, R. Bibiloni, C. Knauf, A. Waget, A. M. Neyrinck et al., Changes in Gut Microbiota Control Metabolic Endotoxemia-Induced Inflammation in High-Fat Diet-Induced Obesity and Diabetes in Mice, Diabetes, vol.57, issue.6, pp.1470-1481, 2008.
DOI : 10.2337/db07-1403

URL : https://hal.archives-ouvertes.fr/inserm-00410066

P. D. Cani, J. Amar, M. A. Iglesias, M. Poggi, C. Knauf et al., Metabolic Endotoxemia Initiates Obesity and Insulin Resistance, Diabetes, vol.56, issue.7, pp.1761-1772, 2007.
DOI : 10.2337/db06-1491

P. Wellhoener, A. Vietheer, F. Sayk, B. Schaaf, H. Lehnert et al., Metabolic Alterations in Adipose Tissue During the Early Phase of Experimental Endotoxemia in Humans, Hormone and Metabolic Research, vol.43, issue.11, pp.754-759, 2011.
DOI : 10.1055/s-0031-1287854

P. Dandona, A. Aljada, and A. Bandyopadhyay, Inflammation: the link between insulin resistance, obesity and diabetes, Trends in Immunology, vol.25, issue.1, pp.4-7, 2004.
DOI : 10.1016/j.it.2003.10.013

C. N. Lumeng, J. L. Bodzin, and A. R. Saltiel, Obesity induces a phenotypic switch in adipose tissue macrophage polarization, Journal of Clinical Investigation, vol.117, issue.1, pp.175-184, 2007.
DOI : 10.1172/JCI29881

M. T. Nguyen, S. Favelyukis, A. K. Nguyen, D. Reichart, P. A. Scott et al., A Subpopulation of Macrophages Infiltrates Hypertrophic Adipose Tissue and Is Activated by Free Fatty Acids via Toll-like Receptors 2 and 4 and JNK-dependent Pathways, Journal of Biological Chemistry, vol.282, issue.48, pp.35279-35292, 2007.
DOI : 10.1074/jbc.M706762200

S. Nishimura, I. Manabe, M. Nagasaki, K. Eto, H. Yamashita et al., CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity, Nature Medicine, vol.17, issue.8, pp.914-920, 2009.
DOI : 10.1038/nm.1964

A. Bouloumie, C. A. Curat, C. Sengenes, K. Lolmede, A. Miranville et al., Role of macrophage tissue infiltration in metabolic diseases, Current Opinion in Clinical Nutrition and Metabolic Care, vol.8, issue.4, pp.347-354, 2005.
DOI : 10.1097/01.mco.0000172571.41149.52

H. Kanda, S. Tateya, Y. Tamori, K. Kotani, K. Hiasa et al., MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity, Journal of Clinical Investigation, vol.116, issue.6, pp.1494-1505, 2006.
DOI : 10.1172/JCI26498DS1

S. P. Weisberg, D. Hunter, R. Huber, J. Lemieux, S. Slaymaker et al., CCR2 modulates inflammatory and metabolic effects of high-fat feeding, Journal of Clinical Investigation, vol.116, issue.5, pp.115-124, 2006.
DOI : 10.1172/JCI24335C1

T. Suganami, K. Tanimoto-koyama, J. Nishida, M. Itoh, X. Yuan et al., Role of the Toll-like Receptor 4/NF-??B Pathway in Saturated Fatty Acid-Induced Inflammatory Changes in the Interaction Between Adipocytes and Macrophages, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.27, issue.1, pp.84-91, 2007.
DOI : 10.1161/01.ATV.0000251608.09329.9a

C. N. Lumeng, S. M. Deyoung, J. L. Bodzin, and A. R. Saltiel, Increased Inflammatory Properties of Adipose Tissue Macrophages Recruited During Diet-Induced Obesity, Diabetes, vol.56, issue.1, pp.16-23, 2007.
DOI : 10.2337/db06-1076

S. Winer, Y. Chan, G. Paltser, D. Truong, H. Tsui et al., Normalization of obesity-associated insulin resistance through immunotherapy, Nature Medicine, vol.56, issue.8, pp.921-929, 2009.
DOI : 10.1038/nm.2001

D. A. Winer, S. Winer, L. Shen, P. P. Wadia, J. Yantha et al., B cells promote insulin resistance through modulation of T cells and production of pathogenic IgG antibodies, Nature Medicine, vol.180, issue.5, pp.610-617, 2011.
DOI : 10.1186/1477-7819-4-89

M. Feuerer, L. Herrero, D. Cipolletta, A. Naaz, J. Wong et al., Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters, Nature Medicine, vol.38, issue.8, pp.930-939, 2009.
DOI : 10.1038/nm.2002

K. A. Kim, W. Gu, I. A. Lee, E. H. Joh, K. et al., High Fat Diet-Induced Gut Microbiota Exacerbates Inflammation and Obesity in Mice via the TLR4 Signaling Pathway, PLoS ONE, vol.7, issue.10, p.47713, 2012.
DOI : 10.1371/journal.pone.0047713.s007

S. P. Weisberg, D. Mccann, M. Desai, M. Rosenbaum, R. L. Leibel et al., Obesity is associated with macrophage accumulation in adipose tissue, Journal of Clinical Investigation, vol.112, issue.12, pp.1796-1808, 2003.
DOI : 10.1172/JCI19246DS1

M. J. Song, K. H. Kim, J. M. Yoon, K. , and J. B. , Activation of Toll-like receptor 4 is associated with insulin resistance in adipocytes, Biochemical and Biophysical Research Communications, vol.346, issue.3, pp.739-745, 2006.
DOI : 10.1016/j.bbrc.2006.05.170

G. Charriere, B. Cousin, E. Arnaud, M. Andre, F. Bacou et al., Preadipocyte Conversion to Macrophage. EVIDENCE OF PLASTICITY, Journal of Biological Chemistry, vol.278, issue.11, pp.9850-9855, 2003.
DOI : 10.1074/jbc.M210811200

URL : https://hal.archives-ouvertes.fr/hal-00409046

G. M. Charriere, B. Cousin, E. Arnaud, C. Saillan-barreau, M. Andre et al., Macrophage characteristics of stem cells revealed by transcriptome profiling, Experimental Cell Research, vol.312, issue.17, pp.3205-3214, 2006.
DOI : 10.1016/j.yexcr.2006.06.034

URL : https://hal.archives-ouvertes.fr/hal-00319933

C. Cabou, G. Campistron, N. Marsollier, C. Leloup, C. Cruciani-guglielmacci et al., Brain Glucagon-Like Peptide-1 Regulates Arterial Blood Flow, Heart Rate, and Insulin Sensitivity, Diabetes, vol.57, issue.10, pp.2577-2587, 2008.
DOI : 10.2337/db08-0121

URL : https://hal.archives-ouvertes.fr/inserm-00408890

P. D. Cani, A. M. Neyrinck, F. Fava, C. Knauf, R. G. Burcelin et al., Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia, Diabetologia, vol.77, issue.Suppl 1, pp.2374-2383, 2007.
DOI : 10.1007/s00125-007-0791-0

P. Bjorntorp, M. Karlsson, H. Pertoft, P. Pettersson, L. Sjostrom et al., Isolation and characterization of cells from rat adipose tissue developing into adipocytes, Journal of Lipid Research, vol.19, pp.316-324, 1978.

P. Turnbaugh, V. Ridaura, J. Faith, F. Rey, R. Knight et al., The Effect of Diet on the Human Gut Microbiome: A Metagenomic Analysis in Humanized Gnotobiotic Mice, Science Translational Medicine, vol.1, issue.6, pp.6-14, 2009.
DOI : 10.1126/scitranslmed.3000322

P. J. Turnbaugh, M. Hamady, T. Yatsunenko, B. L. Cantarel, A. Duncan et al., A core gut microbiome in obese and lean twins, Nature, vol.8, issue.7228, pp.480-484, 2009.
DOI : 10.1038/nature07540

R. Caesar, C. S. Reigstad, H. K. Backhed, C. Reinhardt, M. Ketonen et al., Gut-derived lipopolysaccharide augments adipose macrophage accumulation but is not essential for impaired glucose or insulin tolerance in mice, Gut, vol.61, issue.12, 2012.
DOI : 10.1136/gutjnl-2011-301689

M. Serino, E. Luche, S. Gres, A. Baylac, M. Berge et al., Metabolic adaptation to a high-fat diet is associated with a change in the gut microbiota, Gut, vol.61, issue.4, pp.543-553, 2012.
DOI : 10.1136/gutjnl-2011-301012

URL : https://hal.archives-ouvertes.fr/inserm-00726182

A. Bouloumie, L. Casteilla, and M. Lafontan, Adipose Tissue Lymphocytes and Macrophages in Obesity and Insulin Resistance: Makers or Markers, and Which Comes First?, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.28, issue.7, pp.1211-1213, 2008.
DOI : 10.1161/ATVBAHA.108.168229

S. Poglio, F. De-toni, D. Lewandowski, A. Minot, E. Arnaud et al., In situ production of innate immune cells in murine white adipose tissue, situ production of innate immune cells in murine white adipose tissue, pp.4952-4962, 2012.
DOI : 10.1182/blood-2012-01-406959

J. Amar, C. Chabo, A. Waget, P. Klopp, C. Vachoux et al., Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes: molecular mechanisms and probiotic treatment, EMBO Molecular Medicine, vol.112, issue.9, pp.559-572, 2011.
DOI : 10.1002/emmm.201100159

URL : https://hal.archives-ouvertes.fr/inserm-00801348

J. D. Schertzer, A. K. Tamrakar, J. G. Magalhaes, S. Pereira, P. J. Bilan et al., NOD1 Activators Link Innate Immunity to Insulin Resistance, Diabetes, vol.60, issue.9, pp.2206-2215, 2011.
DOI : 10.2337/db11-0004

J. M. Fernandez-real, S. Perez-del-pulgar, E. Luche, J. M. Moreno-navarrete, A. Waget et al., CD14 Modulates Inflammation-Driven Insulin Resistance, Diabetes, vol.60, issue.8, pp.2179-2186, 2011.
DOI : 10.2337/db10-1210

URL : https://hal.archives-ouvertes.fr/inserm-00615242

L. E. Zaragosi, B. Wdziekonski, P. Villageois, M. Keophiphath, M. Maumus et al., Activin A Plays a Critical Role in Proliferation and Differentiation of Human Adipose Progenitors, Diabetes, vol.59, issue.10, pp.2513-2521, 2010.
DOI : 10.2337/db10-0013

URL : https://hal.archives-ouvertes.fr/inserm-00492248

L. Wang, L. Li, X. Ran, M. Long, M. Zhang et al., Lipopolysaccharides reduce adipogenesis in 3T3-L1 adipocytes through activation of NF-kappaB pathway and downregulation of AMPK expression, 2013.

J. Bassols, F. J. Ortega, J. M. Moreno-navarrete, B. Peral, W. Ricart et al., Study of the proinflammatory role of human differentiated omental adipocytes, Journal of Cellular Biochemistry, vol.25, issue.6, pp.1107-1117, 2009.
DOI : 10.1002/jcb.22208

T. Mracek, B. Cannon, and J. Houstek, IL-1 and LPS but not IL-6 inhibit differentiation and downregulate PPAR gamma in brown adipocytes, Cytokine, vol.26, issue.1, pp.9-15, 2004.
DOI : 10.1016/j.cyto.2003.12.001

R. Menghini, L. Fiorentino, V. Casagrande, R. Lauro, and M. Federici, The role of ADAM17 in metabolic inflammation, Atherosclerosis, vol.228, issue.1, pp.12-17, 2013.
DOI : 10.1016/j.atherosclerosis.2013.01.024

R. Menghini, V. Casagrande, S. Menini, A. Marino, V. Marzano et al., TIMP3 Overexpression in Macrophages Protects From Insulin Resistance, Adipose Inflammation, and Nonalcoholic Fatty Liver Disease in Mice, Diabetes, vol.61, issue.2, pp.454-462, 2012.
DOI : 10.2337/db11-0613

R. Menghini, S. Menini, R. Amoruso, L. Fiorentino, V. Casagrande et al., Tissue Inhibitor of Metalloproteinase 3 Deficiency Causes Hepatic Steatosis and Adipose Tissue Inflammation in Mice, Gastroenterology, vol.136, issue.2, pp.663-672, 2009.
DOI : 10.1053/j.gastro.2008.10.079

A. P. Moreira, T. F. Texeira, A. B. Ferreira, C. Peluzio-mdo, A. Rde et al., Influence of a high-fat diet on gut microbiota, intestinal permeability and metabolic endotoxaemia, British Journal of Nutrition, vol.81, issue.05, pp.801-809, 2012.
DOI : 10.1023/B:DDAS.0000026302.92898.ae

S. Pendyala, J. M. Walker, and P. R. Holt, A High-Fat Diet Is Associated With Endotoxemia That Originates From the Gut, Gastroenterology, vol.142, issue.5, pp.1100-1101, 2012.
DOI : 10.1053/j.gastro.2012.01.034

A. C. Vreugdenhil, C. H. Rousseau, T. Hartung, J. W. Greve, C. Van-'t-veer et al., Lipopolysaccharide (LPS)-Binding Protein Mediates LPS Detoxification by Chylomicrons, The Journal of Immunology, vol.170, issue.3, pp.1399-1405, 2003.
DOI : 10.4049/jimmunol.170.3.1399

S. Ghoshal, J. Witta, J. Zhong, W. De-villiers, and E. Eckhardt, Chylomicrons promote intestinal absorption of lipopolysaccharides, The Journal of Lipid Research, vol.50, issue.1, pp.90-97, 2009.
DOI : 10.1194/jlr.M800156-JLR200

F. Laugerette, C. Vors, A. Geloen, M. A. Chauvin, C. Soulage et al., Emulsified lipids increase endotoxemia: possible role in early postprandial low-grade inflammation, The Journal of Nutritional Biochemistry, vol.22, issue.1, 2010.
DOI : 10.1016/j.jnutbio.2009.11.011

URL : https://hal.archives-ouvertes.fr/inserm-00486697

Y. Wang, S. Ghoshal, M. Ward, W. De-villiers, J. Woodward et al., Chylomicrons Promote Intestinal Absorption and Systemic Dissemination of Dietary Antigen (Ovalbumin) in Mice, PLoS ONE, vol.4, issue.12, p.8442, 2009.
DOI : 10.1371/journal.pone.0008442.g005