G. Marburg, 3 Bernhard Nocht Institute for Tropical Medicine, 20324.

S. Fahn and . Parkinsonism, In Meritt' s Neurology, pp.679-693, 2000.

E. Hirsch and S. Hunot, Neuroinflammation in Parkinson's disease: a target for neuroprotection?, The Lancet Neurology, vol.8, issue.4, pp.382-397, 2009.
DOI : 10.1016/S1474-4422(09)70062-6

P. Mcgeer, S. Itagaki, B. Boyes, and E. Mcgeer, Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson's and Alzheimer's disease brains, Neurology, vol.38, issue.8, pp.1285-1291, 1988.
DOI : 10.1212/WNL.38.8.1285

C. Barcia, S. Bahillo, A. Fernandez-villalba, E. Bautista, V. Poza et al., Evidence of active microglia in substantia nigra pars compacta of parkinsonian monkeys 1 year after MPTP exposure, Glia, vol.373, issue.4, pp.402-409, 2004.
DOI : 10.1002/glia.20015

J. Langston, L. Forno, J. Tetrud, A. Reeves, J. Kaplan et al., Evidence of active nerve cell degeneration in the substantia nigra of humans years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposure, Annals of Neurology, vol.44, issue.4, pp.598-605, 1999.
DOI : 10.1002/1531-8249(199910)46:4<598::AID-ANA7>3.0.CO;2-F

P. Mcgeer, C. Schwab, A. Parent, and D. Doudet, Presence of reactive microglia in monkey substantia nigra years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine administration, Annals of Neurology, vol.74, issue.5, pp.599-604, 2003.
DOI : 10.1002/ana.10728

N. Laflamme and S. Rivest, Toll-like receptor 4: the missing link of the cerebral innate immune response triggered by circulating gram-negative bacterial cell wall components, The FASEB Journal, vol.15, issue.1, pp.155-163, 2001.
DOI : 10.1096/fj.00-0339com

T. Kawai and S. Akira, Pathogen recognition with Toll-like receptors, Current Opinion in Immunology, vol.17, issue.4, pp.338-344, 2005.
DOI : 10.1016/j.coi.2005.02.007

M. Tsan and B. Gao, Endogenous ligands of Toll-like receptors, Journal of Leukocyte Biology, vol.76, issue.3, pp.514-519, 2004.
DOI : 10.1189/jlb.0304127

C. Erridge, Endogenous ligands of TLR2 and TLR4: agonists or assistants?, Journal of Leukocyte Biology, vol.87, issue.6, pp.989-999, 2010.
DOI : 10.1189/jlb.1209775

F. Sharp, S. Massa, and R. Swanson, Heat-shock protein protection, Trends in Neurosciences, vol.22, issue.3, pp.97-99, 1999.
DOI : 10.1016/S0166-2236(98)01392-7

A. Barreto, J. Gonzalez, E. Kabingu, A. Asea, and S. Fiorentino, Stress-induced release of HSC70 from human tumors, Cellular Immunology, vol.222, issue.2, pp.97-104, 2003.
DOI : 10.1016/S0008-8749(03)00115-1

A. Lang, D. Benke, F. Eitner, D. Engel, S. Ehrlich et al., Heat Shock Protein 60 Is Released in Immune-Mediated Glomerulonephritis and Aggravates Disease: In Vivo Evidence for an Immunologic Danger Signal, Journal of the American Society of Nephrology, vol.16, issue.2, pp.383-391, 2005.
DOI : 10.1681/ASN.2004040276

R. Rajaiah and K. Moudgil, Heat-shock proteins can promote as well as regulate autoimmunity, Autoimmunity Reviews, vol.8, issue.5, pp.388-393, 2009.
DOI : 10.1016/j.autrev.2008.12.004

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2668694

A. Schapira, Mitochondria in the aetiology and pathogenesis of Parkinson's disease, The Lancet Neurology, vol.7, issue.1, pp.97-109, 2008.
DOI : 10.1016/S1474-4422(07)70327-7

G. Pfister, C. Stroh, H. Perschinka, M. Kind, M. Knoflach et al., Detection of HSP60 on the membrane surface of stressed human endothelial cells by atomic force and confocal microscopy, Journal of Cell Science, vol.118, issue.8, pp.1587-1594, 2005.
DOI : 10.1242/jcs.02292

A. Sapozhnikov, E. Ponomarev, T. Tarasenko, and W. Telford, Spontaneous apoptosis and expression of cell surface heat-shock proteins in cultured EL-4 lymphoma cells, Cell Proliferation, vol.68, issue.6, pp.363-378, 1999.
DOI : 10.1002/(SICI)1097-4652(199702)170:2<192::AID-JCP11>3.0.CO;2-K

K. Ohashi, V. Burkart, S. Flohe, and H. Kolb, Cutting Edge: Heat Shock Protein 60 Is a Putative Endogenous Ligand of the Toll-Like Receptor-4 Complex, The Journal of Immunology, vol.164, issue.2, pp.558-561, 2000.
DOI : 10.4049/jimmunol.164.2.558

S. Lehnardt, E. Schott, T. Trimbuch, D. Laubisch, C. Krueger et al., A Vicious Cycle Involving Release of Heat Shock Protein 60 from Injured Cells and Activation of Toll-Like Receptor 4 Mediates Neurodegeneration in the CNS, Journal of Neuroscience, vol.28, issue.10, pp.2320-2331, 2008.
DOI : 10.1523/JNEUROSCI.4760-07.2008

V. Jackson-lewis and S. Przedborski, Protocol for the MPTP mouse model of Parkinson's disease, Nature Protocols, vol.398, issue.1, pp.141-151, 2007.
DOI : 10.1038/nprot.2006.342

P. Sonsalla and R. Heikkila, The influence of dose and dosing interval on MPTP-induced dopaminergic neurotoxicity in mice, European Journal of Pharmacology, vol.129, issue.3, pp.339-345, 1986.
DOI : 10.1016/0014-2999(86)90444-9

T. Tanaka, K. Iqbal, E. Trenkner, and D. Liu, Abnormally phosphorylated tau in SY5Y human neuroblastoma cells, FEBS Letters, vol.267, issue.1, pp.5-9, 1995.
DOI : 10.1016/0014-5793(95)00061-D

C. Gomez, J. Reiriz, M. Pique, J. Gil, I. Ferrer et al., Low concentrations of 1-methyl-4-phenylpyridinium ion induce caspase-mediated apoptosis in human SH-SY5Y neuroblastoma cells, Journal of Neuroscience Research, vol.794, issue.5, pp.421-428, 2001.
DOI : 10.1002/1097-4547(20010301)63:5<421::AID-JNR1037>3.0.CO;2-4

P. Michel and Y. Agid, Chronic Activation of the Cyclic AMP Signaling Pathway Promotes Development and Long-Term Survival of Mesencephalic Dopaminergic Neurons, Journal of Neurochemistry, vol.67, issue.4, pp.1633-1642, 1996.
DOI : 10.1046/j.1471-4159.1996.67041633.x

B. Salthun-lassalle, E. Hirsch, J. Wolfart, M. Ruberg, and P. Michel, Rescue of Mesencephalic Dopaminergic Neurons in Culture by Low-Level Stimulation of Voltage-Gated Sodium Channels, Journal of Neuroscience, vol.24, issue.26, pp.5922-5930, 2004.
DOI : 10.1523/JNEUROSCI.5668-03.2004

URL : https://hal.archives-ouvertes.fr/hal-00325266

B. Knusel, P. Michel, J. Schwaber, and F. Hefti, Selective and nonselective stimulation of central cholinergic and dopaminergic development in vitro by nerve growth factor, basic fibroblast growth factor, epidermal growth factor, insulin and the insulin-like growth factors I and II, J Neurosci, vol.10, pp.558-570, 1990.

J. Kawamoto and J. Barrett, Cryopreservation of primary neurons for tissue culture, Brain Research, vol.384, issue.1, pp.84-93, 1986.
DOI : 10.1016/0006-8993(86)91222-9

S. Mourlevat, J. Troadec, M. Ruberg, and P. Michel, Prevention of Dopaminergic Neuronal Death by Cyclic AMP in Mixed Neuronal/Glial Mesencephalic Cultures Requires the Repression of Presumptive Astrocytes, Molecular Pharmacology, vol.64, issue.3, pp.578-586, 2003.
DOI : 10.1124/mol.64.3.578

P. Michel, B. Dandapani, B. Knusel, J. Sanchez-ramos, and F. Hefti, Toxicity of 1-Methyl-4-Phenylpyridinium for Rat Dopaminergic Neurons in Culture: Selectivity and Irreversibility, Journal of Neurochemistry, vol.48, issue.4, pp.1102-1109, 1990.
DOI : 10.1016/0006-8993(86)90567-6

J. Saura, J. Tusell, and J. Serratosa, High-yield isolation of murine microglia by mild trypsinization, Glia, vol.115, issue.3, pp.183-189, 2003.
DOI : 10.1002/glia.10274

M. Mattson, S. Barger, J. Begley, and R. Mark, Chapter 10 Calcium, Free Radicals, and Excitotoxic Neuronal Death in Primary Cell Culture, Methods Cell Biol, vol.46, pp.187-216, 1995.
DOI : 10.1016/S0091-679X(08)61930-5

J. Van-meerloo, G. Kaspers, and J. Cloos, Cell Sensitivity Assays: The MTT Assay, Methods Mol Biol, vol.731, pp.237-245, 2011.
DOI : 10.1007/978-1-61779-080-5_20

J. Stockert, A. Blazquez-castro, M. Canete, R. Horobin, and A. Villanueva, MTT assay for cell viability: Intracellular localization of the formazan product is in lipid droplets, Acta Histochemica, vol.114, issue.8, pp.785-796, 2012.
DOI : 10.1016/j.acthis.2012.01.006

R. Medzhitov, Toll-like receptors and innate immunity, Nature Reviews Immunology, vol.274, issue.2, pp.135-145, 2001.
DOI : 10.1038/35100529

A. Poltorak, X. He, I. Smirnova, M. Liu, C. Van-huffel et al., Defective LPS Signaling in C3H/HeJ and C57BL/10ScCr Mice: Mutations in Tlr4 Gene, Science, vol.282, issue.5396, pp.2085-2088, 1998.
DOI : 10.1126/science.282.5396.2085

F. Amano and T. Noda, Improved detection of nitric oxide radical (NO.) production in an activated macrophage culture with a radical scavenger, carboxy PTIO and Griess reagent, FEBS Lett, vol.368, pp.425-428, 1995.

Y. Jang, X. Quan, R. Das, S. Xu, C. Chung et al., High-dose clevudine impairs mitochondrial function and glucose-stimulated insulin secretion in INS-1E cells, BMC Gastroenterology, vol.58, issue.1, p.4, 2012.
DOI : 10.1002/art.23235

P. Michel, M. Ruberg, and Y. Agid, Rescue of Mesencephalic Dopamine Neurons by Anticancer Drug Cytosine Arabinoside, Journal of Neurochemistry, vol.69, issue.4, pp.1499-1507, 1997.
DOI : 10.1046/j.1471-4159.1997.69041499.x

C. Habich, K. Baumgart, H. Kolb, and V. Burkart, The Receptor for Heat Shock Protein 60 on Macrophages Is Saturable, Specific, and Distinct from Receptors for Other Heat Shock Proteins, The Journal of Immunology, vol.168, issue.2, pp.569-576, 2002.
DOI : 10.4049/jimmunol.168.2.569

R. Vabulas, P. Ahmad-nejad, C. Da-costa, T. Miethke, C. Kirschning et al., Endocytosed HSP60s Use Toll-like Receptor 2 (TLR2) and TLR4 to Activate the Toll/Interleukin-1 Receptor Signaling Pathway in Innate Immune Cells, Journal of Biological Chemistry, vol.276, issue.33, pp.31332-31339, 2001.
DOI : 10.1074/jbc.M103217200

A. Osterloh, U. Kalinke, S. Weiss, B. Fleischer, and M. Breloer, Synergistic and Differential Modulation of Immune Responses by Hsp60 and Lipopolysaccharide, Journal of Biological Chemistry, vol.282, issue.7, pp.4669-4680, 2007.
DOI : 10.1074/jbc.M608666200

W. Welch, Heat shock proteins functioning as molecular chaperones: their roles in normal and stressed cells, Philos Trans R Soc Lond B Biol Sci, vol.339, pp.327-333, 1993.
DOI : 10.1007/978-94-011-2108-8_9

F. Quintana and I. Cohen, The HSP60 immune system network, Trends in Immunology, vol.32, issue.2, pp.89-95, 2011.
DOI : 10.1016/j.it.2010.11.001

M. Breloer, B. Dorner, S. More, T. Roderian, B. Fleischer et al., Heat shock proteins as "danger signals": eukaryotic Hsp60 enhances and accelerates antigen-specific IFN-?? production in T cells, European Journal of Immunology, vol.190, issue.7, pp.2051-2059, 2001.
DOI : 10.1002/1521-4141(200107)31:7<2051::AID-IMMU2051>3.0.CO;2-H

W. Chen, U. Syldath, K. Bellmann, V. Burkart, and H. Kolb, Human 60-kDa heat-shock protein: a danger signal to the innate immune system

S. Gallucci and P. Matzinger, Danger signals: SOS to the immune system, Current Opinion in Immunology, vol.13, issue.1, pp.114-119, 2001.
DOI : 10.1016/S0952-7915(00)00191-6

R. Wallin, A. Lundqvist, S. More, A. Von-bonin, R. Kiessling et al., Heat-shock proteins as activators of the innate immune system, Trends in Immunology, vol.23, issue.3, pp.130-135, 2002.
DOI : 10.1016/S1471-4906(01)02168-8

G. Liberatore, V. Jackson-lewis, S. Vukosavic, A. Mandir, M. Vila et al., Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease, Nat Med, vol.5, pp.1403-1409, 1999.

C. Noelker, L. Morel, T. Lescot, A. Osterloh, D. Alvarez-fischer et al., Toll like receptor 4 mediates cell death in a mouse MPTP model of Parkinson disease. Sci Rep, p.1393, 2013.

L. Fellner, R. Irschick, K. Schanda, M. Reindl, L. Klimaschewski et al., Toll-like receptor 4 is required for ??-synuclein dependent activation of microglia and astroglia, Glia, vol.19, issue.Suppl 1, pp.349-360, 2013.
DOI : 10.1002/glia.22437

A. Jayakumar, X. Tong, K. Curtis, R. Ruiz-cordero, M. Abreu et al., Increased toll-like receptor 4 in cerebral endothelial cells contributes to the astrocyte swelling and brain edema in acute hepatic encephalopathy, Journal of Neurochemistry, vol.9, issue.6, pp.890-903, 2014.
DOI : 10.1111/jnc.12516

M. Pascual-lucas, S. Fernandez-lizarbe, J. Montesinos, and C. Guerri, LPS or ethanol triggers clathrin- and rafts/caveolae-dependent endocytosis of TLR4 in cortical astrocytes, Journal of Neurochemistry, vol.13, issue.3, pp.448-462, 2014.
DOI : 10.1111/jnc.12639

L. Tarassishin, H. Suh, and S. Lee, LPS and IL-1 differentially activate mouse and human astrocytes: Role of CD14, Glia, vol.14, issue.6, pp.999-1013, 2014.
DOI : 10.1002/glia.22657

S. Flohe, J. Bruggemann, S. Lendemans, M. Nikulina, G. Meierhoff et al., Human Heat Shock Protein 60 Induces Maturation of Dendritic Cells Versus a Th1-Promoting Phenotype, The Journal of Immunology, vol.170, issue.5, pp.2340-2348, 2003.
DOI : 10.4049/jimmunol.170.5.2340

A. Kol, A. Lichtman, R. Finberg, P. Libby, K. et al., Cutting Edge: Heat Shock Protein (HSP) 60 Activates the Innate Immune Response: CD14 Is an Essential Receptor for HSP60 Activation of Mononuclear Cells, The Journal of Immunology, vol.164, issue.1
DOI : 10.4049/jimmunol.164.1.13

A. Osterloh, A. Veit, A. Gessner, B. Fleischer, and M. Breloer, Hsp60-mediated T cell stimulation is independent of TLR4 and IL-12, International Immunology, vol.20, issue.3, pp.433-443, 2008.
DOI : 10.1093/intimm/dxn003

D. Zhang, L. Sun, H. Zhu, L. Wang, W. Wu et al., Microglial LOX-1 reacts with extracellular HSP60 to bridge neuroinflammation and neurotoxicity, Neurochemistry International, vol.61, issue.7, pp.1021-1035, 2012.
DOI : 10.1016/j.neuint.2012.07.019