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Abstract

Background: Small insertion and deletion polymorphisms (Indels) are the second most common mutations in the
human genome, after Single Nucleotide Polymorphisms (SNPs). Recent studies have shown that they have significant
influence on genetic variation by altering human traits and can cause multiple human diseases. In particular, many
Indels that occur in protein coding regions are known to impact the structure or function of the protein. A major
challenge is to predict the effects of these Indels and to distinguish between deleterious and neutral variants. When an
Indel occurs within a coding region, it can be either frameshifting (FS) or non-frameshifting (NFS). FS-Indels either
modify the complete C-terminal region of the protein or result in premature termination of translation. NFS-Indels
insert/delete multiples of three nucleotides leading to the insertion/deletion of one or more amino acids.

Results: In order to study the relationships between NFS-Indels and Mendelian diseases, we characterized NFS-Indels
according to numerous structural, functional and evolutionary parameters. We then used these parameters to identify
specific characteristics of disease-causing and neutral NFS-Indels. Finally, we developed a new machine learning
approach, KD4i, that can be used to predict the phenotypic effects of NFS-Indels.

Conclusions: We demonstrate in a large-scale evaluation that the accuracy of KD4i is comparable to existing state-of-
the-art methods. However, a major advantage of our approach is that we also provide the reasons for the predictions,
in the form of a set of rules. The rules are interpretable by non-expert humans and they thus represent new knowledge
about the relationships between the genotype and phenotypes of NFS-Indels and the causative molecular perturbations
that result in the disease.
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Background
A major goal in human genetics is to understand the links

between the presence of genetic variations, including

Single Nucleotide Polymorphisms (SNPs), insertions/

deletions (Indels), Copy Number Variants (CNV),

recombination events, etc. and individual or population

characteristics, risk of disease or response to the

environment. This requires the characterization and

analysis of the type and distribution of the variations in

human populations and/or each individual to understand

how a specific genetic landscape can influence human

health and behavior [1-6].

Recently, with the development of Next Generation

Sequencing (NGS) techniques [7], the available information

related to genetic human variation has evolved rapidly,

resulting in overwhelming volumes of data. For example,

the dbSNP database (build 138) [8] contains about 62

million SNPs and 11 million Indels. Half a million of these

observed SNPs are found within an exon and modify a sin-

gle amino acid. These are known as non-synonymous SNPs

(nsSNPs) and are the most frequent cause of Mendelian

diseases since they alter the protein’s function [9].
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Insertions and/or deletions, commonly known as Indels,

are the second most frequent type of human variation [10].

When an Indel occurs within an exon, it can be either

frameshifting (FS) or non-frameshifting (NFS): FS-Indels

either modify the complete C-terminal region of the pro-

tein or result in premature termination of translation,

while NFS-Indels involve multiples of three nucleotides,

leading to the insertion/deletion of one or more amino

acids [11]. The importance of Indels in the human

genome has emerged recently from various studies

[11-13]. More specifically, small Indels (less than

500 bp or more usually less than 200 bp) are the second

most frequent cause of Mendelian diseases [9] and

represent some of the least well-characterized and

least understood variants in the human genome. This

is due in part to the fact that they are difficult to

identify accurately during NGS calling [14].

To predict the functional impact of sequence variation,

numerous tools have been developed recently, mainly

focusing on nsSNPs and Mendelian diseases [15]. These

tools share some common features, notably: i) each

variant is classified according to a two state category:

neutral (often designated as Variant of Uncertain

Significance) or disease-causing (deleterious) and

annotated with a certain number of parameters, ii) a

model is created using a machine learning technique

(Support Vector Machine, Bayesian network, Inductive

Logic Programing, etc.) and criteria, scores or rules are

defined to distinguish known neutral variants from known

deleterious ones, iii) the criteria, scores or rules are then

used to predict the status of unknown variants. Among

the numerous methods available, SIFT [16] and Polyphen

[17] are the most widely used, since they provide good

accuracy (around 80%) for the prediction of nsSNPs

involved in diseases. The PROVEAN [18] method uses a

scoring metric to predict the pathogeneticity of SNPs and

NFS-Indels based on sequence similarity before and after

the introduction of an amino acid variation. Two

tools have also been published that are designed

specifically to predict the effect of Indels: SIFT-indel

[19,20], and DDIG-in [21].

During the last few years, we have developed an

integrated framework, SM2PH [4], dedicated to the study

and prediction of human genetic variation. SM2PH is

built around a knowledge base, which provides unified

access to diverse information associated with any human

protein (pathway, tissue expression, interactions, evolution,

etc.) and facilitates the integrated study of the structural

and functional impacts of nsSNPs and their phenotypic

effects. The framework also incorporates the MSV3d [22]

database of known missense variants in all human proteins

for which a 3D structure template is available. The human

missense variants in MSV3d are mainly retrieved from the

dbSNP [8] and SwissVar [23] databases and are classified

into 2 categories: disease-causing variants associated with

OMIM [24] diseases and Variants of Uncertain Significance

(VUS). Each missense variant is then characterized

using a large set of structural, functional and evolu-

tionary parameters. Finally, the information and data

model in MSV3d is exploited by the KD4v [25] sys-

tem to predict the pathogenicity of nsSNPs based on

a set of rules generated by Inductive Logic Programming

(ILP) [26].

Here, we describe the extension of the SM2PH frame-

work to include NFS-Indels. This study is composed of

two parts: (i) the collection, annotation and comparative

study of a reference set of disease causing and neutral

NFS-Indels and (ii) the design of a machine learning

method (KD4i), which is able to predict the effects of

NFS-Indels and shed light on the molecular mechanisms

underlying their pathogenicity.

First, the knowledge base in the SM2PH framework was

extended to include a large data set of 2163 NFS-Indels,

including 757 disease-causing variants and 1406 neutral

or unknown variants. These variants were then annotated

with an extensive set of parameters, specifically designed

to describe the diverse structural, functional and evolu-

tionary characteristics of NFS-Indels. We then performed

a statistical analysis to study the general characteristics of

disease-causing and neutral NFS-Indels.

Second, an Inductive Logic Programming (ILP) machine

learning approach was developed to predict disease-causing

NFS-Indels. ILP systems allow learning with much richer

representations than many machine learning methods and

the complex relationships learned are described as logic

programs. In KD4i, the logic programs are provided as a set

of rules that are easy to comprehend by the user. Thus,

KD4i is able, not only to make a prediction, but also to give

the reasons for the prediction, i.e. to generate new

knowledge about the causative molecular perturbations,

such as the disruption of catalytic residues, binding sites

or post-translational modifications, that result in disease.

Methods
Data set collection

The reference set of NFS-Indels was constructed using

the same approach as that described in the article

presenting the PROVEAN method [18]. First, NFS-Indels

were collected from the UniProtKB/Swiss-Prot database

[27], and annotated in-house as deleterious, neutral

or unknown, based on keywords found in the UniProtKB

annotations (e.g. variants described using words such

as “inhibit'', ''affect'', etc. were classified as deleterious).

Second, this set was enriched with NFS-Indels retrieved

from the 1000 Genomes Project database [28]. Variants

with average allele frequencies of >10% were collected and

could thus be considered as common, i.e. non pathogenic

or neutral, in the human population.
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All the variants were then mapped to the human

protein sequences in the SM2PH knowledge base.

This resulted in a data set containing a total of 2163

NFS-Indels, mapped to 1535 distinct proteins. Of these,

1406 NFS-Indels were defined as polymorphisms/neutral

(147 insertions and 1259 deletions) and 757 as disease-

causing/deleterious (108 insertions and 649 deletions).

Then, 757 neutral NFS-Indels (101 insertions and 657 de-

letions), were randomly selected from the pool of neutral

NFS-Indels. Thus, the final data set was balanced for

positive/negative examples (i.e. neutral/disease-causing

NFS-Indels), an important characteristic to ensure appro-

priate statistical analysis and quality learning. The variants

used in the final data set are provided in Additional file 1.

Dataset annotation

The annotations used to characterize the NFS-Indel data

set were either extracted from the SM2PH knowledge base

or calculated using existing tools for protein structural ana-

lysis and in-house developed Python scripts. The SM2PH

knowledge base contains high quality multiple sequence

alignments for all human proteins, which are annotated

with structural and functional parameters derived from

MACSIMS (Multiple Alignment of Complete Sequences

Information Management System). MACSIMS combines

knowledge-based methods with complementary ab initio

sequence-based predictions to extract valuable information

from multiple alignments [29]. These parameters are de-

scribed in more detail in [25] and on the SM2PH help pages

(decrypthon.igbmc.fr/sm2ph/cgi-bin/help). This informa-

tion was complemented by additional structural parameters,

including secondary structures and residue solvent access-

ible surface area (RSA) calculated using Spine-X [30].

The different structure, functional and evolutionary

parameters are shown in Table 1 and described in detail

below.

Conservation

It is generally thought that conserved sites in proteins have

important functional or structural roles [31]. The conserva-

tion categories for a given NFS-Indel position are extracted

from MACSIMS via the SM2PH knowledge base. We used

two different annotations: conserved residues and

conserved ‘core blocks’, i.e. sequence segments that are

conserved in subfamilies of the multiple alignments.

Functional annotations

It is assumed that changes at important functional sites in a

protein will have major effects on its function. We therefore

identify the presence of NFS-Indels in known functional

sites, including domains extracted from the Pfam protein

family database [32], motifs from the Prosite database [33],

domains from the UniProt database, as well as the regions

annotated by MACSIMS.

Physico-chemical properties

These parameters have been shown previously to be

important for nsSNP classification [25]. Among the

numerous physico-chemical properties associated with

an amino acid, we have chosen four important ones:

volume, charge, hydrophobicity and polarity. For a

given NFS-Indel, we calculate parameters as follows:

For each amino acid in the NFS-Indel, the values for each

property are translated into numerical categories (Tables 2, 3).

Two parameters are then associated with each NFS-Indel:

the average and the total of the individual amino acid prop-

erties. Finally, since we use a semantic algorithm for learn-

ing (see next section), the average and total values are

classified into different semantic categories (Table 2).

Local perturbation

In order to characterize the local perturbation induced

by the NFS-Indel, we have introduced a set of original

parameters, expressed as the difference between the

physico-chemical properties of the NFS-Indel residues

(described in Table 3) with respect to (i) the site

(the amino acids that take the place of a deletion, or

the original amino acids at the position of an insertion),

(ii) the environment, consisting of the n (equal to the length

of the NFS-Indel) flanking amino acids of a NFS-Indel or

(iii) the region (twice the length of the environment). The

local perturbation parameters are then defined as:

Perturbation averageð Þ ¼ �xs−�xi

Where x ¼ volume; hydrophobicity; polarity or charge

xi ¼ average property of the NFS−Indel

xs ¼ average property of the local sequence

site; environment or regionð Þ

And:

Perturbation totalð Þ ¼
X

xs−
X

xi

Where x ¼ volume; hydrophobicity; polarity or charge
X

xi ¼ total of the properties for the amino acids in

the NFS−Indel
X

xs ¼ total of the properties for the local sequence

site; environment or regionð Þ

Structural annotations

� Disorder Probability: Disordered regions in proteins

are structurally flexible and hence more permissive to

modification by micro-insertion or micro-deletion.

Nevertheless, despite their lack of a well-defined

globular structure, the disordered regions are known
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Table 1 Parameters used for Indel annotation with their defined values and the source of the data

Class Parameters In final
method?

Values Source

Conservation Conserved residue Yes Yes/No MACSIMS
via SM2PH

Block Yes

Functional Pfam domain Yes Yes/No MACSIMS
via SM2PH

Prosite motif No

Uniprot domain Yes

Physico-chemical properties (average) Volume No See table 2 In-house

Hydrophobicity No

Polarity Yes

Charge No

Physico-chemical properties (total) Volume Yes See table 2 In-house

Hydrophobicity Yes

Polarity No

Charge No

Local perturbation in site (average) Volume Yes −2 to +2* In-house

Hydrophobicity Yes

Polarity No

Charge No

Local perturbation in environment (average) Volume No −2 to +2* In-house

Hydrophobicity No

Polarity No

Charge No

Local perturbation in region (average) Volume No −2 to +2* In-house

Hydrophobicity No

Polarity No

Charge No

Local perturbation in site (total) Volume Yes −2 to +2* In-house

Hydrophobicity Yes

Polarity No

Charge No

Local perturbation in environment (total) Volume No −2 to +2* In-house

Hydrophobicity No

Polarity No

Charge No

Local perturbation in region (total) Volume No −2 to +2* In-house

Hydrophobicity No

Polarity Yes

Charge No

Structural Disorder Yes Structured (probability of disorder P < 0.4) Spine-D

Semi-disorder (0.4 < P < 0.7)

Disorder (P > 0.7)

RSA Secondary structure Yes Fully buried (RSA value (Rv < 30) Spine-D

Buried (30 < Rv < 60)

Intermediate (60 < Rv < 90)
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to be involved in many basic functions in molecular

recognition and macromolecular assemblies and are

frequently associated with signal transduction,

cell-cycle regulation and transcription, for example

[37]. Here, we define a disordered region as having a

Spine-D disorder probability >0.7.

� Relative solvent accessible surface area (RSA): RSA is

defined as the solvent accessible surface area of a

residue in a protein normalized by the accessible

surface area of the residue in its “unfolded” state

[38]. It has been suggested that the environments

around protein residues may affect their functions

or their propensities for different structures [39] and

therefore, amino acids may behave differently when

they are buried or on the surface of the protein.

� Secondary structure location: The NFS-Indel

location is defined as in an alpha helix, a beta sheet

or a loop. Our hypothesis is that NFS-Indels may be

more deleterious if they occur within secondary

structures, especially in the case of beta sheets, since

the loss of a single strand is likely to disrupt the

overall structure.

Relative indel position (RIP)

It has been shown in a study devoted to the analysis of a

genome from a healthy individual [40] that NFS-Indels

occur more frequently in the N/C-terminal regions of

proteins. The authors hypothesized that this may be due

to higher selective pressure in the central part of the

protein. Therefore, NFS-Indels occurring in this region

may be deleterious. We defined the RIP as the ratio

between the position of the NFS-Indel and the length of

the protein. The N-terminal region is then defined as

the first 10% of the protein and C-terminal region as the

last 10%.

Indel length

We used the definition of a ‘small’ NFS-Indel given in

[40], as being in the range of 3–24 base pairs (i.e. 1–8

amino acids). In fact, 62% of the NFS-Indels were < =6

base pairs and longer NFS-Indels become increasing

rare, and NFS-Indel of 24 bp (8 amino acids), represent

only 3%. We limited our study to NFS-Indels ranging

from 3–18 base pairs for which enough data is available.

We hypothesize that longer NFS-Indels are more disruptive

than shorter ones for the protein structure.

Table 1 Parameters used for Indel annotation with their defined values and the source of the data (Continued)

Exposed (90 < Rv < 120)

Fully exposed (Rv > 120)

Secondary structure
Relative Indel Position

Yes Coil Spine-D

Helix

Strand

Two (if NFS-Indel is in the transition zone
between a strand/helix and coil)

Others Relative Indel Position Yes N-terminal In-house

Middle

C-terminal

Indel length Yes One In-house

More than one

Presence of Proline No Yes/No In-house

Presence of Glycine No Yes/No In-house

The column ‘In final method?’ indicates whether the parameter is used in the final ILP rule set for prediction of deleterious NFS-Indels. *The numerical values range

from −5 to +5 but, in order to reduce computational cost, we have regrouped values higher than ±2 into the semantic category two or more/two or less.

Table 2 Semantic categories of the 5 physico-chemical

properties: volume, hydrophobicity, charge, and polarity

Physico-chemical
property

Semantic
categories

Numeric
categories

Real
values

Volume [34] Very small 0 60-90 Å3

Small 1 108-117 Å3

Medium 2 138-154 Å3

Large 3 162-174 Å3

Very large 4 189-228 Å3

Hydrophobicity [35] Hydrophilic 0 −55 to −14

Neutral 1 −10 to 13

Hydrophobic 2 41 to 63

Very hydrophobic 3 74 to 100

Polarity [36] Polar 0

Apolar 1

Charge [36] Negative −1

Neutral 0

Positive 1
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Presence of proline/glycine

It has been shown that Proline and Glycine play a role

in protein folding. For example, Glycine presents faster

rate constants for contact formation than any other

amino acid, as expected from its increased backbone

flexibility due to the lack of a Cβ-atom. The presence of

a Proline residue leads to more complex dynamics in the

process of contact formation, and this amino acid is also

a strong α-helix breaker [41].

Machine learning strategy

Machine learning, a branch of artificial intelligence,

concerns the construction and study of computational

systems that can learn from data. The development of a

machine learning tool requires three steps. The first one

is to obtain a data set that is large, representative and

error-free, in order to ensure accurate automated

learning. The second is to develop a strategy for the

characterization of the objects or examples contained in

this data set. This is called annotation of the data set

and includes the parameters used to characterize the

examples in the data set, as well as the categories or

classes that are to be learned (in this case, deleterious or

neutral variants). These two steps are done in the two

previous paragraphs ‘Data set collection’ and ‘Data set

annotation’. The third is to design an efficient machine

learning strategy. This includes the pre-selection of the

parameters that will be used during learning and the

choice and optimization of the learning algorithm [42].

Here, we have used a machine learning algorithm

called Inductive Logic Programming (ILP), which infers

hypotheses from experience (inductive learning) by

means of logic programming. The approach is based on

positive and negative examples, which combined with

background knowledge, can be used to infer a hy-

pothesis. Positive and negative examples are objects

(here, NFS-Indels) from a training set that satisfy a

condition (here, are deleterious or neutral) and the

background knowledge consists of the set of parameters

for these objects. ILP searches for a combination of

parameter values that covers the maximum number

of positive examples and the minimum number of

negative examples. Such combinations are called ‘rules’.

The process is then repeated until all positive examples

are covered by at least one rule.

We used the ILP algorithm implemented in Aleph

[26]. Aleph allows the user to set a number of program

options, including the minimum number of positive

examples (minpos) and the maximum number of negative

examples for each rule (noise). Then ILP evaluates each

rule based on the difference between the number positive

examples covered and the number of negative examples.

If the minpos and noise constraints are satisfied the rule is

added to the hypothesis space. In the experiments

described in the Results section we set minpos = 6 and

noise = 0, in order to eliminate false positive predictions.

The rules produced by the ILP algorithm can be used

to predict the status of unknown objects, i.e. to predict

whether an unknown NFS-Indel is deleterious or neutral.

Table 3 Annotation of amino acids based on classified

values of 4 physico-chemical properties: volume,

hydrophobicity, charge, and polarity

Amino Acid Volume Hydrophobicity Charge Polarity

A 1 2 0 1

C 2 2 0 1

D 2 0 −1 0

E 3 0 −1 0

F 5 3 0 1

G 1 1 0 1

H 3 1 1 0

I 4 3 0 1

K 4 0 1 0

L 4 3 0 1

M 4 3 0 1

N 2 0 0 0

P 2 0 0 1

Q 3 1 0 0

R 4 0 1 0

S 1 1 0 0

T 2 1 0 0

V 3 3 0 1

W 5 3 0 0

Y 5 2 0 0

Table 4 Statistical parameters used to assess the prediction performance of the ILP method

Real

Positive Negative

Prediction Positive Tp Fp Precision Tp
Tp þ Fp

�

Negative Fn Tn NPV Tn
Tn þ Fn=

Sensitivity Tp
Tp þ Fn

�

Specificity Tn
Tn þ Fp= MCC Tp�Tn−Fp�Fn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TpþFpð Þ TpþFnð Þ TnþFpð Þ TpþFnð Þ
p

Accuracy: Tp þ Tn
�

Tp
þTnþ Fpþ Fn

T=True, F=False, p=Positive, n=Negative, NPV=Negative predictive value, MCC=Matthews correlation coefficient.
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To evaluate the prediction power of our algorithm, we

used a 10-fold cross-validation strategy. Specifically, we

randomly split the data set into 10 parts: 9 parts were used

to train the ILP algorithm and 1 part was used to estimate

the prediction performance of the method. The perform-

ance was assessed using the statistical parameters shown

in Table 4 and defined in [42]. This process was repeated

10 times.

Parameter selection

Before running Aleph, we performed a pre-selection of

parameters to avoid the effects of the ‘curse of dimen-

sionality’ [43] due to the large number of parameters

and the relatively small number of examples in the data

set. Several approaches have been proposed for dimen-

sionality reduction, including tests that are independent

of the machine learning algorithm, such as Principal

Component Analysis (PCA) [44], which we used initially

to investigate the level of redundancy in our parameter

set. However, we were unable to clearly identify the most

discriminative parameters using this approach. There-

fore, we used an in-house ‘wrapper’ approach [44], which

incorporates the ILP learning process in the parameter

selection process, and allows the identification of more

complex relationships. As an example, we can cite the

disorder probability is important for the characterization

of deleterious mutations, but not for neutral mutations,

and is in fact the most discriminative parameter in the

ILP rules. We used the wrapper approach to evaluate

the quality of the parameters.

First, we estimated the discriminative power of the

parameters by calculating:

x ¼
X

f ni−f pi

�

�

�

�

�

�

Where:

f ni ¼ Relative frequency of negative examples for

each value i of a given parameter

Figure 1 Comparison of conservation parameters for disease-causing and neutral NFS-Indels. P-value for chi-squared test, where the null
hypothesis is that there is no significant difference the values of the parameter for deleterious and neutral variants.
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f pi ¼ Relative frequency of positive examples for

each value i of a given parameter

Second, we calculated the correlation matrix between

all the parameters and defined a ‘correlation cutoff ’,

above which we considered two parameters to be

significantly correlated. Third, we sorted the parame-

ters by their discriminative power x, and for each

parameter, we eliminated the significantly correlated

parameters with lower x. Finally, we eliminated the

parameters that had values of x lower than a given ‘x

cutoff ’, since these can be considered to be non-

discriminating and eliminating them reduces the

computational costs associated with large numbers of

parameters. We tested different ‘correlation cutoffs’

in the range 0.5-0.9 with ‘x cutoff ’ in the range 0.2-

0.3, and measured the ILP prediction accuracy using

a 10 fold cross-validation. The best performance

(accuracy = 0.78) was achieved with a correlation

cutoff of 0.6/0.7 and a x cutoff of 0.2 (data not

shown). The correlation matrix and the reduced set

of selected parameters are provided in Additional

files 2 and 3.

One of the major concerns in such machine learn-

ing strategies is the problem of over-fitting. If the

learned model is over-fitted to the training set, it will

generally have poor predictive performance on the

test data. In order to detect any potential over-

fitting, we plotted the training accuracy and the

testing accuracy as a function of the number of

parameters in the model (Additional file 4). For a

correlation cutoff <0.8, both the training and the

testing accuracy increase with an increased number

of parameters, indicating that the model is not over-fitted

and thus, that the wrapper approach is effective. A

small loss of training accuracy is observed however,

for larger sets of parameters, corresponding to correlation

cutoffs > =0.8.

Figure 2 Comparison of functional site parameters for disease-causing and neutral NFS-Indels. P-value for chi-squared test, where the null
hypothesis is that there is no significant difference the values of the parameter for deleterious and neutral variants.
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Results
The first part of this study was aimed at identifying a

comprehensive set of parameters that may usefully

characterize the structural or functional consequences of

a NFS-Indel in a protein sequence. We started with the

existing parameters in the SM2PH knowledge base,

originally used to characterize nsSNPs. It is assumed that

83% of the harmful nsSNPs affect protein stability. For

this reason, the previously developed nsSNP prediction

methods have focused on information about the

structure and function of the protein, as well as the

conservation and the physico-chemical properties of

the change implied by the mutation [31]. Using the

same philosophy, we estimated or retrieved various

data from SM2PH related to the sequence, structure

and function of the protein and/or of the inserted/

deleted amino acids. We then identified a number of

additional parameters, designed specifically for the

characterization of NFS-Indels, such as the probabil-

ity of disordered regions in the proteins or the local

perturbation of physico-chemical properties caused

by the mutation.

We then used this large set of parameters to develop a

machine learning strategy to study the relationships

Figure 3 Comparison of amino acid volumes for disease-causing and neutral NFS-Indels. Top: volumes of the amino acids in the NFS-Indel.
Middle and bottom: local perturbation of amino acid volumes caused by the NFS-Indel. P-value for chi-squared test, where the null hypothesis is
that there is no significant difference between the values of the parameter for deleterious and neutral variants.
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between NFS-Indels and their corresponding pheno-

types. The strategy involves (i) the construction of a

large data set for training and testing and the compre-

hensive annotation of the examples in the data set with

our diverse set of structural, functional and evolutionary

parameters, (ii) the optimization of an efficient Inductive

Logic Programming (ILP) method to learn a set of

rules that distinguish between positive (deleterious)

and negative (neutral) examples and (iii) the exploitation

of these rules to extract knowledge about the phenotypic

effects of unknown NFS-Indels.

Construction and annotation of the NFS-Indel data set

The background knowledge used for the machine

learning strategy consists of a large data set of posi-

tive and negative examples of NFS-Indels. The con-

struction of a suitable background knowledge base is

perhaps the most important step in the development

of any prediction method. Our data set consists of

757 disease-causing/deleterious NFS-Indels (108 insertions

and 649 deletions) and 757 neutral NFS-Indels (101

insertions and 657 deletions), collected from publically

available databases.

Investigation of NFS-Indel pathogenicity

In this section, we aim to deduce and describe some of

the general reasons behind the pathogenicity of NFS-

Indels in Mendelian diseases. In order to discover differ-

ences between deleterious and neutral NFS-Indels, we

performed a chi-square test (95% confidence) for each

parameter, where the null hypothesis is that there is no

significant difference between the values of the param-

eter for deleterious and neutral variants. The results of

these analyses are described below:

� Conservation: As shown in Figure 1, disease-causing

NFS-Indels are more likely to occur at conserved

sites than neutral NFS-Indels. This is true for both

conserved single residue positions and conserved core

blocks, although the difference is more significant

Figure 4 Comparison of hydrophobicity for disease-causing and neutral NFS-Indels. Top: hydrophobicity in the NFS-Indel. Middle and
bottom: local perturbation of hydrophobicity caused by the NFS-Indel. P-value for chi-squared test, where the null hypothesis is that there is no
significant difference between the values of the parameter for deleterious and neutral variants.
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for the ‘core block’ parameter extracted from the

MACSIMS program.

� Functional annotations: As shown in Figure 2,

disease-causing NFS-Indels are also more likely to

occur at known functional sites. The most significant

difference is observed for protein domains extracted

from the Pfam database.

� Physico-chemical properties and their local

perturbation: The 4 physico-chemical parameters as-

sociated with the amino acids in the NFS-Indel, as

well as their perturbation in the local environment,

are shown in Figures 3, 4, 5 and 6 (amino acid volume

in Figure 3, hydrophobicity in Figure 4, polarity in

Figure 5 and charge in Figure 6) for both average and

total scores. The results are similar for the four

properties and the two types of scores (average/total):

� Physico-chemical properties: Disease-causing

NFS-Indels tend to be bigger, more hydrophobic,

and more apolar than neutral NFS-Indels. The

differences are more significant for the total

values compared to the average values (higher

p-values). For the total values, we also observe

that deleterious NFS-Indels tend to be more

positively charged than neutral Indels.

Figure 5 Comparison of charge for disease-causing and neutral NFS-Indels. Top: charge in the NFS-Indel. Middle and bottom: local perturbation
of charge caused by the NFS-Indel. P-value for chi-squared test, where the null hypothesis is that there is no significant difference between the values of
the parameter for deleterious and neutral variants.
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� Local Perturbation: The perturbation parameters

reflect differences between the NFS-Indel and the

flanking amino acids. Here, we consider the

physico-chemical parameters of the NFS-Indel

compared to: the site, the environment and the

region (see Methods for details). Note that a

negative perturbation value indicates that the

average (total) value for the amino acids in the

NFS-Indel is larger than for the surrounding resi-

dues and a positive value indicates a smaller aver-

age (total) NFS-Indel parameter. In general,

disease-causing NFS-Indels tend to be more

associated with positive and negative changes,

while neutral NFS-Indels tend to have similar

physico-chemical properties compared to

the surrounding site. Nevertheless, we

observe some exceptions, for example, for

positive changes in the volume parameter,

i.e. NFS-Indels that are smaller than the

surrounding amino acids, the phenotype is

more likely to be neutral. It should be noted

that, in the case of polarity, the differences

are less significant, compared to the other

physico-chemical parameters.

Figure 6 Comparison of polarity for disease-causing and neutral NFS-Indels. Top: polarity in the NFS-Indel. Middle and bottom: local
perturbation of polarity caused by the NFS-Indel. P-value for chi-squared test, where the null hypothesis is that there is no significant difference
between the values of the parameter for deleterious and neutral variants.
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� Structural annotations: As shown in Figure 7,

neutral NFS-Indels tend to be exposed on the

surface of the protein, in disordered regions and

in coiled coils, while disease-causing NFS-Indels

are more likely to be located in structured, buried

regions and secondary structures. Concerning the

type of secondary structure, deleterious NFS-Indels

are more often found in strands than in helices.

� Others: As shown in Figure 8, deleterious NFS-Indels

are more likely to be located in the central region of

the protein and are longer than neutral NFS-Indels.

No significant differences are observed when the

NFS-Indel includes a proline, but deleterious

NFS-Indels tend to contain a glycine more often

than neutral NFS-Indels.

Machine learning method and prediction performance

We used a 10-fold cross validation experiment to esti-

mate the accuracy of our method, where the complete

data set was randomly divided into 10 parts (nine parts

for training, the rest for testing) and the process was

repeated 10 times. For the 10 tests, our computational

strategy achieves an average prediction accuracy on the

test set of 79%, sensitivity of 89%, specificity of 69%,

precision of 75%, negative prediction value of 85%, and

Matthews Correlation Coefficient (MCC) of 0.59 (Table 5).

We then identified the set of rules produced by the ILP

algorithm that achieved the highest accuracy (83% on the

test set, corresponding to fold 1). This final rule set is

composed of 241 human-interpretable rules that represent

new knowledge about the molecular perturbations under-

lying disease-causing NFS-Indels. The complete list of

parameters used in this set are indicated in Table 1.

Finally, we compared the performance of KD4i with

two recent methods for the prediction of the phenotypic

effects of NFS-Indels, namely DDIG-in and SIFT-Indel.

DDIG-in uses a Support Vector Machine (SVM) as the

learning method, while SIFT-Indel uses a rule set de-

rived from a decision tree algorithm. In order to provide

a more direct comparison with the DDIG-in method, we

have also trained a SVM on our dataset and parameters.

The results are shown in Table 6. We observe that the

accuracies obtained with DDIG-in and our SVM imple-

mentation are similar, despite the fact that the size of

the data set used to train the DDIG-in algorithm is

almost 4 times larger than the one used here, since we

Figure 7 Comparison of structural parameters for disease-causing and neutral NFS-Indels. P-value for chi-squared test, where the null
hypothesis is that there is no significant difference between the values of the parameter for deleterious and neutral variants.
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used only publically available data in our experiment. In

comparison to SIFT-Indel, the KD4i ILP approach

(based on the final rule set) achieves similar accuracy,

but with higher sensitivity and lower specificity.

The higher sensitivity of KD4i is due in part to the

power of the ILP approach, but also to the parameters

used in the final set of rules. Indeed, all the tools tested

here use different sets of parameters to characterize the

NFS-Indels. As shown on Table 7, the disorder probabil-

ity and the sequence conservation are important param-

eters for all three methods. However, the KD4i rule set

includes other parameters that are used in only one or

the other of the existing methods, such as the solvent

accessible surface area (also used in DDIG-in) or loca-

tion in a Pfam functional domain (also used in SIFT-

Indel). In addition, we have highlighted the importance

of some novel parameters, notably the local perturbation

induced by the variant, in terms of amino acid volume

for example.

Assessing the rules produced by KD4i

KD4i is a rule-based system and the output is a prediction

in binary form (deleterious/neutral). One major advantage

of our approach is that the rules used to predict

Figure 8 Comparison of other parameters for disease-causing and neutral NFS-Indels. P-value for chi-squared test, where the null
hypothesis is that there is no significant difference between the values of the parameter for deleterious and neutral variants.
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deleterious NFS-Indels are available in a human-

interpretable format. In addition to providing useful infor-

mation about the pathogenicity of specific NFS-Indels, it

is possible to consider the prediction performance of a

given rule independently of the rest. In order to identify

the best performing rules (i.e. those resulting in predic-

tions with the highest confidence), we ranked them ac-

cording to two characteristics: coverage and precision.

Coverage is defined as the percentage of deleterious

NFS-Indels in the training set that can be explained by a

given rule. Given that we have 757 deleterious (positive)

NFS-Indels in our data set and we have defined 241

rules, the expected average coverage is 3.2%. Values

below this cutoff thus reflect rules that are more specific

for a particular type of NFS-Indel, while larger values

reflect more general rules. The average coverage of our

rules is 2.8%, reflecting a slight tendency towards more

specific rules. The maximum coverage is 7.4% and the

minimum 0.8%.

Precision (also known as positive predictive value) is

the proportion of positive test results that are true posi-

tives and reflects the probability that a mutation pre-

dicted to be deleterious is truly deleterious. For two

rules with the same precision, we consider the best rule

to be the one that has higher coverage. Since we set the

noise option in the ILP algorithm to 0 (i.e. the rules

cannot cover any negative examples), the precision of

the rules in the training set is 100%. Figure 9 shows the

precision of the rules calculated for the complete data

set and for the test set only. If the test set is representa-

tive of the whole data set, the precision values should be

similar. As expected, the precision of the rules observed

in the test set is generally slightly lower than for the

whole set, with less rules achieving 100% precision. The

precision should be increased when the size of whole

data set is increased and the precision in the test set

should tend towards that observed for the whole data

set, as was demonstrated in [45].

The complete list of ranked rules is provided in

Additional file 5, together with their coverage and preci-

sion statistics, and the top ranking rules are discussed in

the following section.

Another way to estimate the most reliable predictions

is to identify the NFS-Indels that are predicted to be

deleterious by more than one rule. Table 8 shows the

average precision as a function of the number of rules

that cover a given prediction. We observe that the

precision generally increases as the number of rules

increases.

Rules governing NFS-Indel pathogenicity

The KD4i method provides explicit rules that shed

light on the reasons for the pathogenicity of specific

NFS-Indels. In this section, we describe the three top

ranking rules in the final rule set identified above

(corresponding to fold 1).

1. Rule 20 (coverage 7.26%, precision 100%):

deleterious (A) if secondary_ structure (A, strand),

block (A, true), local_perturbation_region_polarity_

total (A, equal), relative_indel_position (A, middle).

This rule can be interpreted as: a NFS-Indel (A) is

deleterious if it is located in a beta strand and in a

conserved block, the polarity of the NFS-Indel is

equal to that of the local region and the NFS-Indel

is found in the central region of the protein. The

rule thus indicates the specific conditions that

determine NFS-Indel pathogenicity in beta strands.

Indeed, we have observed that deleterious NFS-Indels

occur more often than neutral NFS-Indels in

secondary structure elements (Figure 7) and in

particular in beta strands, probably due to their highly

organized structure. However, KD4i is able to explain

Table 5 Validation of KD4i by 10 fold cross-validation

Fold Accuracy Sensitivity Specificity Precision NPV MCC

0 77% 87% 67% 76% 81% 0.55

1 83% 93% 74% 78% 91% 0.68

2 78% 85% 71% 76% 81% 0.56

3 79% 96% 63% 72% 94% 0.62

4 78% 88% 68% 74% 85% 0.57

5 73% 86% 60% 67% 82% 0.48

6 77% 85% 71% 73% 83% 0.56

7 82% 90% 74% 79% 87% 0.65

8 83% 85% 81% 83% 83% 0.66

9 79% 90% 65% 76% 85% 0.58

Average 79% 89% 69% 75% 85% 0.59

NPV: negative prediction value, MCC: Matthews Correlation Coefficient.

Table 6 Comparison of prediction performance for KD4i

with the DDIG-in and SIFT-Indel methods

Algorithm Accuracy Sensitivity Specificity Precision NPV MCC

DDIG-in 83 - - - - 0.67

SIFT-Indel 82 81 82 82 - 0.63

KD4i (SVM) 84 80 87 88 79 0.67

KD4i (ILP)
(average)

79 89 69 75 85 0.59

KD4i (ILP)
(final)

83 93 74 78 91 0.68

For the KD4i (ILP) implementation, the average performances in the 10-fold

cross-validation and the performance of the final selected rule set (corresponding

to fold 1 in Table 5) are provided. For DDIG-in and SIFT-Indel, the performances

for combined insertions and deletions (as originally reported by the authors, for

similar balanced data sets) are shown.
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in more detail some of the reasons underlying this

difference. In fact, almost half of the deleterious

NFS-Indels in strands are found in the central

region of the protein and in a conserved block. The

prediction is completed by the specification of the

local perturbation of the polarity in the region.

2. Rule 14 (coverage 7.00%, precision 100%):

deleterious (A) if pfam (A, true), domain (A, true),

conserved_residue (A, false), local_perturbation_

region_polarity_total (A, equal), indel_hydropho-

bicity_total (A, very_hydrophobic).

This rule describes NFS-Indels that are located

within a Pfam or Uniprot domain, but do not

affect a conserved residue. In this case, a very

hydrophobic NFS-Indel can still have a dele-

terious effect on the protein structure or

function.

3. Rule 19 (coverage 6.80%, precision 100%):

deleterious (A) if block (A, true),

probability_of_disorder (A, structured),

local_perturbation_region_polarity_total (A, equal),

indel_hydrophobicity_total (A, very_hydrophobic),

local_perturbation_in_site_volume_average

(A, two_more).

The rule describes a NFS-Indel in a conserved block

that is situated in a structured region of the protein.

Here, the insertion/deletion of very hydrophobic and

very large residues probably disrupts the

organization of the local region.

The complete set of rules is provided in the Additional

file 5.

Assessment of the reliability of the KD4i predictions

In order to assess the reliability of our predictions, we

analyzed population data from the 1000 Genomes Project

[46], including genomes of 1,092 healthy individuals from

14 populations. The majority of the variants observed in

the 1000 Genomes are therefore expected to be neutral.

However, several studies [47,48] have shown that healthy

individuals may carry deleterious variants without any obvi-

ous phenotypic effects. As an example, Watson’s genome

[49] has a well-known Alzheimer’s variant without apparent

clinical effect. Nevertheless, these variants are expected to

Table 7 Top parameters used in KD4i (ranked according to their percent usage in the rules), DDIG-in and SIFT-Indel

KD4i DDIG-in SIFT-Indel

Disorder Probability Probability of disorder Fraction of Pfam domains

Indel in a Pfam domain Solvent accessible surface area Indel in a repeat

Conserved amino acid DNA conservation score 1 Indel in a disordered region

Relative solvent accessible surface area DNA conservation score 2 DNA conservation score

Local perturbation in volume (average) Sheet/amino acid conservation score 1 -

Figure 9 Precision of rules in the final selected rule set calculated for the whole data set and for the test set.
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be observed with low frequencies at the population level.

Conversely, variants found with higher frequencies are

less likely to be deleterious. Therefore, we grouped the

NFS-Indels in the 1000 Genomes by allele frequency (at 0.1

intervals) and compared these frequencies with the predic-

tions produced by KD4i (Figure 10). As might be expected,

the percentage of variants predicted to be deleterious

decreases as the allele frequency increases (r = −0.82), thus

confirming the pertinence of our predictions.

Case study: NFS-Indel in a kinesin protein

To illustrate the potential of the KD4i approach to infer

new knowledge about individual variants, we have chosen

a variant from the test set (fold 1), namely a deletion of an

asparagine residue at position 526 (N526del) of the KIF5A

protein. KIF5A (UniProt ID: Q12840) belongs to the

microtubule-associated protein family of kinesins, that

serve as molecular motors to distribute intracellular cargo

along microtubules. KIF5A is expressed exclusively in

neurons, and has been recently linked to hereditary spastic

paraplegias (HSPs), a genetically heterogeneous group of

neurodegenerative disorders characterized by progressive

lower-limb spasticity and weakness. The HSP pathology is

characterized by axonal degeneration of motor and

sensory neurons [50].

The variant (KIF5A_N526del) is predicted to be

deleterious by 7 rules. We can compute the total precision,

by taking the true/false positives for each rule and applying:

Precision total ¼
X True positives

True positivesþ False positives

Since the precision is 100% and we have a large num-

ber of rules, we have high confidence in the prediction.

In order to extract more detailed information, we con-

structed a histogram of the usage of each parameter in

this set of 7 rules. As shown in Figure 11, conservation-

related (conserved residue and MACSIMS domain and

block) and functional (Pfam site) parameters are largely

Table 8 Precision of predictions as a function of the

number of associated rules

a) → Whole data set

N° of rules N° of deleterious
NFS-Indels covered

N° of neutral
NFS-Indels covered

Average
precision

1 27 5 84.38

2 26 7 78.79

3 25 1 96.15

4 16 1 94.12

5 14 3 82.35

6 13 1 92.86

7 220 2 99.01

b)→ Test set

N° of rules N° of deleterious
NFS-Indels covered

N° of neutral
NFS-Indels covered

Average
precision

1 8 5 61.54

2 6 7 46.15

3 6 1 85.71

4 8 1 88.89

5 4 3 57.14

6 3 1 75.00

Figure 10 Correlation of the percentage of KD4i deleterious predictions with the allele frequencies of NFS-indels found in the 1000

Genome Project.

Bermejo-Das-Neves et al. BMC Bioinformatics 2014, 15:111 Page 17 of 20

http://www.biomedcentral.com/1471-2105/15/111



represented. In addition, since the amino acid deleted is

polar, hydrophilic and small, we hypothesize that the

variant does not disrupt the structural folding process.

We can conclude at this point that the deletion is probably

a loss-of-function variant.

In the literature, the mutated protein, KIF5A_N526del

is described as stable, but nonfunctional [50]. The muta-

tion was subsequently shown to decouple microtubule

binding of the motor, leading to inactivation of ATPase.

Interestingly, drosophila larvae harboring either homo-

zygous or hemizygous mutations in homologous genes

of KIF5A exhibit aberrant neuronal intracellular an-

terograde trafficking of membranous organelles and

accumulation in so-called “organelle jams”, that leads

to neurodegeneration [51].

Discussion and conclusions
Here, we have described a computational system, KD4i,

which exploits a machine learning strategy, namely ILP, to

extract information and generate new knowledge about

NFS-Indel pathogenicity. A major advantage of our

approach is the ability to construct a model that provides

putative explanations for the NFS-Indel pathogenicity,

thanks to the production of human-interpretable rules.

The model constructed by our method includes 207 rules

that explain NFS-Indel pathogenicity in terms of problems

related to stabilization of structured regions or loss of

functional sites, for example. In addition, we have identi-

fied new parameters that are useful in discriminating be-

tween disease-causing and neutral NFS-Indels. The

probability of disorder is the most discriminating par-

ameter for NFS-Indel pathogenicity, since NFS-Indels

in structured regions are very frequently disease-

causing. This can be combined with other parameters,

such as the location of the NFS-Indel in a conserved

segment (core block) of the protein. Other predictors

of disease-causing NFS-Indels include the perturbation of

local physico-chemical properties, such as hydrophobicity

or amino acid volume.

In the future, in order to improve the accuracy KD4i,

we will address the optimization of the parameters,

extend the data set to include more representative

NFS-Indels and investigate new parameters that can

be used to better characterize the variants. Furthermore,

we intend to combine the results of the ILP (deleterious/

neutral) with other machine learning methods (such as

SVM or decision trees) into a single ‘consensus’ predic-

tion. This will hopefully improve the prediction accuracy.

Finally, we hope to expand our infrastructure to cover

other types of variants, for example those occurring

outside the protein coding regions (promoter, 5-UTR,

3-UTR, etc.) or in non-coding regions (RNA genes,

regulatory sites, etc.), given that these regions account

for ~88% of trait-associated variants [52].
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Figure 11 Histogram of occurrence of the different parameters in the rules that cover the kinesin heavy chain isoform 5A (Uniprot ID:

Q12840) N256 deletion.
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