G. Van-camp, P. Willems, and R. Smith, Nonsyndromic hearing impairment: unparalleled heterogeneity, Am J Hum Genet, vol.60, pp.758-764, 1997.

Z. Brownstein, Y. Bhonker, and K. Avraham, High-throughput sequencing to decipher the genetic heterogeneity of deafness, Genome Biology, vol.13, issue.5, p.245, 2012.
DOI : 10.1186/gb-2012-13-5-245

P. Guilford, H. Ayadi, S. Blanchard, H. Chaib, D. Le-paslier et al., gene, Human Molecular Genetics, vol.3, issue.6, pp.989-993, 1994.
DOI : 10.1093/hmg/3.6.989

URL : https://hal.archives-ouvertes.fr/hal-00281481

B. Arab, S. Hmani, M. Denoyelle, F. Boulila-elgaied, A. Chardenoux et al., Mutations of GJB2 in three geographic isolates from northern Tunisia: evidence for genetic heterogeneity within isolates, Clinical Genetics, vol.6, issue.6, pp.439-443, 2000.
DOI : 10.1034/j.1399-0004.2000.570607.x

I. Zwaenepoel, M. Mustapha, M. Leibovici, E. Verpy, R. Goodyear et al., Otoancorin, an inner ear protein restricted to the interface between the apical surface of sensory epithelia and their overlying acellular gels, is defective in autosomal recessive deafness DFNB22, Proceedings of the National Academy of Sciences, vol.99, issue.9, pp.6240-6245, 2002.
DOI : 10.1073/pnas.082515999

O. Abidi, R. Boulouiz, H. Nahili, M. Ridal, M. Alami et al., GJB2 (connexin 26) gene mutations in Moroccan patients with autosomal recessive non-syndromic hearing loss and carrier frequency of the common GJB2???35delG mutation, International Journal of Pediatric Otorhinolaryngology, vol.71, issue.8, pp.21239-1245, 2007.
DOI : 10.1016/j.ijporl.2007.04.019

S. Delmaghani, A. Aghaie, N. Michalski, C. Bonnet, D. Weil et al., Defect in the gene encoding the EAR/EPTP domain-containing protein TSPEAR causes DFNB98 profound deafness, Human Molecular Genetics, vol.21, issue.17, pp.3835-3844, 2012.
DOI : 10.1093/hmg/dds212

URL : https://hal.archives-ouvertes.fr/pasteur-01472843

I. Sahly, E. Dufour, C. Schietroma, V. Michel, A. Bahloul et al., Localization of Usher 1 proteins to the photoreceptor calyceal processes, which are absent from mice, The Journal of Cell Biology, vol.11, issue.2, pp.381-399, 2012.
DOI : 10.1016/S0092-8674(00)00042-8

URL : https://hal.archives-ouvertes.fr/inserm-00743698

K. Baker and R. Parker, Nonsense-mediated mRNA decay: terminating erroneous gene expression, Current Opinion in Cell Biology, vol.16, issue.3, pp.293-299, 2004.
DOI : 10.1016/j.ceb.2004.03.003

U. Manor, A. Disanza, M. Grati, L. Andrade, H. Lin et al., Regulation of Stereocilia Length by Myosin XVa and Whirlin Depends on the Actin-Regulatory Protein Eps8, Current Biology, vol.21, issue.2, pp.167-172, 2011.
DOI : 10.1016/j.cub.2010.12.046

V. Zampini, L. Ruttiger, S. Johnson, C. Franz, D. Furness et al., Eps8 Regulates Hair Bundle Length and Functional Maturation of Mammalian Auditory Hair Cells, PLoS Biology, vol.26, issue.4, p.1001048, 2011.
DOI : 10.1371/journal.pbio.1001048.s006

A. Disanza, M. Carlier, T. Stradal, D. Didry, E. Frittoli et al., Eps8 controls actin-based motility by capping the barbed ends of actin filaments, Nature Cell Biology, vol.113, issue.13, pp.1180-1188, 2004.
DOI : 10.1093/embo-reports/kve197

M. Maa and T. Leu, EPS8, an adaptor protein acts as an oncoprotein in human cancer ISBN: 978-953- http://www.ojrd.com/content Available from: http://www.intechopen.com/books/carcinogenesis/eps8-an-adaptor-protein-acts-as-an-oncopro- tein-in-human-cancer, pp.51-0945, 2013.

D. Furness, S. Johnson, U. Manor, L. Ruttiger, A. Tocchetti et al., Progressive hearing loss and gradual deterioration of sensory hair bundles in the ears of mice lacking the actin-binding protein Eps8L2, Proceedings of the National Academy of Sciences, vol.110, issue.34, pp.13898-13903
DOI : 10.1073/pnas.1304644110

R. Fettiplace and C. Hackney, The sensory and motor roles of auditory hair cells, Nature Reviews Neuroscience, vol.354, issue.1, pp.19-29, 2006.
DOI : 10.1016/0378-5955(94)90040-X

A. Hudspeth, How the ear's works work: mechanoelectrical transduction and amplification by hair cells, Comptes Rendus Biologies, vol.328, issue.2, pp.155-162, 2005.
DOI : 10.1016/j.crvi.2004.12.003

C. Petit and G. Richardson, Linking genes underlying deafness to hair-bundle development and function, Nature Neuroscience, vol.249, issue.6, pp.703-710, 2009.
DOI : 10.1038/nn.2330

T. Welsch, K. Endlich, T. Giese, M. Buchler, and J. Schmidt, Eps8 is increased in pancreatic cancer and required for dynamic actin-based cell protrusions and intercellular cytoskeletal organization, Cancer Letters, vol.255, issue.2, pp.205-218, 2007.
DOI : 10.1016/j.canlet.2007.04.008

F. Probst, R. Fridell, Y. Raphael, T. Saunders, A. Wang et al., Correction of Deafness in shaker-2 Mice by an Unconventional Myosin in a BAC Transgene, Science, vol.280, issue.5368, pp.1444-1447, 1998.
DOI : 10.1126/science.280.5368.1444

P. Mburu, M. Mustapha, A. Varela, D. Weil, A. El-amraoui et al., Defects in whirlin, a PDZ domain molecule involved in stereocilia elongation, cause deafness in the whirler mouse and families with DFNB31, Nature Genetics, vol.34, issue.4, pp.421-428, 2003.
DOI : 10.1038/ng1208

I. Audo, K. Bujakowska, S. Mohand-said, S. Tronche, M. Lancelot et al., A novel DFNB31 mutation associated with Usher type 2 syndrome showing variable degrees of auditory loss in a consanguineous Portuguese family, Mol Vis, vol.17, pp.1598-1606, 2011.

E. Van-wijk, B. Van-der-zwaag, T. Peters, U. Zimmermann, H. Te-brinke et al., The DFNB31 gene product whirlin connects to the Usher protein network in the cochlea and retina by direct association with USH2A and VLGR1, Human Molecular Genetics, vol.15, issue.5, pp.751-765, 2006.
DOI : 10.1093/hmg/ddi490