D. A. Jaffray, J. H. Siewerdsen, J. W. Wong, and A. A. Martinez, Flat-panel cone-beam computed tomography for image-guided radiation therapy, International Journal of Radiation Oncology*Biology*Physics, vol.53, issue.5, pp.1337-1349, 2002.
DOI : 10.1016/S0360-3016(02)02884-5

C. Thilmann, S. Nill, T. Tucking, A. Hoss, B. Hesse et al., Correction of Patient Positioning Errors based on In-Line Cone Beam CTs: Clinical Implementation and First Experiences, International Journal of Radiation Oncology*Biology*Physics, vol.63, issue.1, p.16, 2006.
DOI : 10.1016/j.ijrobp.2005.07.927

J. Chen, O. Morin, M. Aubin, M. Bucci, C. Chuang et al., Dose-guided radiation therapy with megavoltage cone-beam CT, The British Journal of Radiology, vol.79, issue.special_issue_1, pp.87-98, 2006.
DOI : 10.1259/bjr/60612178

J. Pouliot, Megavoltage imaging, megavoltage cone beam CT and doseguided radiation therapy, Front Radiat Ther Oncol, vol.40, pp.132-142, 2007.

B. Schaly, J. Kempe, G. Bauman, J. Battista, and J. Dyk, Tracking the dose distribution in radiation therapy by accounting for variable anatomy, Physics in Medicine and Biology, vol.49, issue.5, p.791, 2004.
DOI : 10.1088/0031-9155/49/5/010

M. Foskey, B. Davis, L. Goyal, S. Chang, E. Chaney et al., Large deformation three-dimensional image registration in image-guided radiation therapy, Physics in Medicine and Biology, vol.50, issue.24, p.5869, 2005.
DOI : 10.1088/0031-9155/50/24/008

W. Greene, S. Chelikani, K. Purushothaman, J. Knisely, Z. Chen et al., Constrained non-rigid registration for use in image-guided adaptive radiotherapy, Medical Image Analysis, vol.13, issue.5, pp.809-817, 2009.
DOI : 10.1016/j.media.2009.07.004

C. Lu, S. Chelikani, X. Papademetris, J. Knisely, M. Milosevic et al., An integrated approach to segmentation and nonrigid registration for application in image-guided pelvic radiotherapy, Medical Image Analysis, vol.15, issue.5, p.772, 2011.
DOI : 10.1016/j.media.2011.05.010

T. Rohlfing, Image Similarity and Tissue Overlaps as Surrogates for Image Registration Accuracy: Widely Used but Unreliable, IEEE Transactions on Medical Imaging, vol.31, issue.2, 2011.
DOI : 10.1109/TMI.2011.2163944

N. Kirby, C. Chuang, and J. Pouliot, A two-dimensional deformable phantom for quantitatively verifying deformation algorithms, Medical Physics, vol.55, issue.8, p.4583, 2011.
DOI : 10.1088/0031-9155/55/21/010

T. Juang, S. Das, J. Adamovics, R. Benning, and M. Oldham, On the Need for Comprehensive Validation of Deformable Image Registration, Investigated With a Novel 3-Dimensional Deformable Dosimeter, International Journal of Radiation Oncology*Biology*Physics, vol.87, issue.2, pp.414-421, 2013.
DOI : 10.1016/j.ijrobp.2013.05.045

J. Schnabel, C. Tanner, A. Castellano-smith, M. Degenhard, D. Leach et al., Validation of nonrigid image registration using finite-element methods: application to breast MR images, IEEE Transactions on Medical Imaging, vol.22, issue.2, pp.238-247, 2003.
DOI : 10.1109/TMI.2002.808367

K. Nie, C. Chuang, N. Kirby, S. Braunstein, and J. Pouliot, Site-specific deformable imaging registration algorithm selection using patient-based simulated deformations, Medical Physics, vol.14, issue.4, p.41911, 2013.
DOI : 10.1120/jacmp.v14i1.4066

J. Cheung, J. Aubry, S. Yom, A. Gottschalk, J. Celi et al., Dose Recalculation and the Dose-Guided Radiation Therapy (DGRT) Process Using Megavoltage Cone-Beam CT, International Journal of Radiation Oncology*Biology*Physics, vol.74, issue.2, pp.583-592, 2009.
DOI : 10.1016/j.ijrobp.2008.12.034

A. Richter, Q. Hu, D. Steglich, K. Baier, J. Wilbert et al., Investigation of the usability of conebeam CT data sets for dose calculation, Radiation Oncology, vol.3, issue.1, p.42, 2008.
DOI : 10.1186/1748-717X-3-42

H. Paganetti, H. Jiang, J. Adams, G. Chen, and E. , Monte Carlo simulations with time-dependent geometries to investigate effects of organ motion with high temporal resolution, International Journal of Radiation OncologyBiologyPhysics, vol.60, issue.3, pp.942-950, 2004.
DOI : 10.1016/S0360-3016(04)01081-8

M. Sharma, E. Weiss, and J. Siebers, Dose deformation-invariance in adaptive prostate radiation therapy: Implication for treatment simulations, Radiotherapy and Oncology, vol.105, issue.2, pp.207-213, 2012.
DOI : 10.1016/j.radonc.2012.10.011

C. Baum, M. Alber, M. Birkner, and F. Nüsslin, Treatment simulation approaches for the estimation of the distributions of treatment quality parameters generated by geometrical uncertainties, Physics in Medicine and Biology, vol.49, issue.24, p.5475, 2004.
DOI : 10.1088/0031-9155/49/24/006

T. Craig, J. Battista, and J. Van-dyk, Limitations of a convolution method for modeling geometric uncertainties in radiation therapy. I. The effect of shift invariance, Medical Physics, vol.29, issue.8, 2001.
DOI : 10.1118/1.1589492

H. Wang, L. Dong, J. O. Daniel, R. Mohan, A. S. Garden et al., Validation of an accelerated ???demons??? algorithm for deformable image registration in radiation therapy, Physics in Medicine and Biology, vol.50, issue.12, p.2887, 2005.
DOI : 10.1088/0031-9155/50/12/011

P. Castadot, J. A. Lee, A. Parraga, X. Geets, B. Macq et al., Comparison of 12 deformable registration strategies in adaptive radiation therapy for the treatment of head and neck tumors, Radiotherapy and Oncology, vol.89, issue.1, pp.1-12, 2008.
DOI : 10.1016/j.radonc.2008.04.010

K. K. Brock, Results of a Multi-Institution Deformable Registration Accuracy Study (MIDRAS), International Journal of Radiation Oncology*Biology*Physics, vol.76, issue.2, pp.583-596, 2010.
DOI : 10.1016/j.ijrobp.2009.06.031

URL : https://hal.archives-ouvertes.fr/hal-00631149

J. Hou, M. Guerrero, W. Chen, and W. D. Dsouza, Deformable planning CT to cone-beam CT image registration in head-and-neck cancer, Medical Physics, vol.52, issue.4, p.2088, 2011.
DOI : 10.1118/1.3554647

S. Nithiananthan, S. Schafer, A. Uneri, D. J. Mirota, J. W. Stayman et al., Demons deformable registration of CT and cone-beam CT using an iterative intensity matching approach, Medical Physics, vol.37, issue.1, p.1785, 2011.
DOI : 10.1118/1.3555037

B. B. Avants, C. L. Epstein, M. Grossman, and J. C. Gee, Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain, Medical Image Analysis, vol.12, issue.1, pp.26-41, 2008.
DOI : 10.1016/j.media.2007.06.004

M. Modat, T. Vercauteren, G. R. Ridgway, D. J. Hawkes, N. C. Fox et al., Diffeomorphic demons using normalized mutual information, evaluation on multimodal brain MR images, Medical Imaging 2010: Image Processing, pp.76-232, 2010.
DOI : 10.1117/12.843962

URL : http://discovery.ucl.ac.uk/19174/1/19174.pdf

H. Lu, M. Reyes, A. Serifovic, S. Weber, Y. Sakurai et al., Multi-modal diffeomorphic demons registration based on point-wise mutual information, 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp.372-375, 2010.
DOI : 10.1109/ISBI.2010.5490333

P. Rogelj, S. Kovai, and J. Gee, Point similarity measures for non-rigid registration of multi-modal data, Computer Vision and Image Understanding, vol.92, issue.1, pp.112-140, 2003.
DOI : 10.1016/S1077-3142(03)00116-4

X. Pennec, P. Cachier, and N. Ayache, Understanding the demons algorithm: 3D non-rigid registration by gradient descent, Medical Image Computing and Computer-Assisted Intervention?MICCAI99, pp.597-605, 1999.

T. Vercauteren, X. Pennec, A. Perchant, and N. Ayache, Diffeomorphic demons using itks finite difference solver hierarchy, The Insight Journal, vol.1, 2007.

S. Reaungamornrat, W. Liu, A. Wang, Y. Otake, S. Nithiananthan et al., Deformable image registration for cone-beam CT guided transoral robotic base-of-tongue surgery, Physics in Medicine and Biology, vol.58, issue.14, p.4951, 2013.
DOI : 10.1088/0031-9155/58/14/4951

C. R. Maurer-jr, R. Qi, and V. Raghavan, A linear time algorithm for computing exact euclidean distance transforms of binary images in arbitrary dimensions Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.25, issue.2, pp.265-270, 2003.

L. Ibanez, W. Schroeder, L. Ng, and J. Cates, The ITK software guide, Kitware, vol.8, 2005.

M. Brieu, M. Boukerrou, P. Dubois, M. Cosson, C. Rubod et al., Vers une modelisation du comportement de la cavite pelvienne, " 18eme Congres Francais de Mecanique Grenoble Finite element simulation of interactions between pelvic organs: Predictive model of the prostate motion in the context of radiotherapy, Journal of biomechanics, vol.42, issue.12, pp.1862-1868, 2007.

L. Keros, V. Bernier, P. Aletti, V. Marchesi, D. Wolf et al., Qualitative estimation of pelvic organ interactions and their consequences on prostate motion: Study on a deceased person, Medical Physics, vol.53, issue.5, p.1902, 2006.
DOI : 10.1016/S0360-3016(02)02882-1

URL : https://hal.archives-ouvertes.fr/hal-00101722

C. Constantinou, J. Djurhuus, D. Silverman, A. Towns, L. Wong et al., Isometric detrusor pressure during bladder filling and its dependency on bladder volume and interruption to flow in control subjects, The Journal of urology, vol.131, issue.1, pp.86-90, 1984.

W. Haynes and N. Read, Ano-rectal activity in man during rectal infusion of saline: a dynamic assessment of the anal continence mechanism., The Journal of Physiology, vol.330, issue.1, pp.45-56, 1982.
DOI : 10.1113/jphysiol.1982.sp014327

S. Tu, C. Shaw, and L. Chen, Noise simulation in cone beam CT imaging with parallel computing Reconstruction toolkit (rtk), Physics in medicine and biology, vol.5140, issue.5, p.1283, 2006.

F. Foroudi, A. Haworth, A. Pangehel, J. Wong, P. Roxby et al., Inter-observer variability of clinical target volume delineation for bladder cancer using CT and cone beam CT, Journal of Medical Imaging and Radiation Oncology, vol.38, issue.1, pp.100-106, 2009.
DOI : 10.1111/j.1754-9485.2009.02044.x

H. Zhong and J. Siebers, Monte Carlo dose mapping on deforming anatomy, Physics in Medicine and Biology, vol.54, issue.19, p.5815, 2009.
DOI : 10.1088/0031-9155/54/19/010