D. Amico, Biochemical outcome after radical prostatectomy, external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer, 1998.

E. Micheli-tzanakou, . Rohlfing, . Torsten, R. Brandt, R. Menzel et al., Calvin <i>Quo Vadis</i> , Atlas-Based Segmentation Handbook of Biomedical Image Analysis, pp.435-486, 2005.

A. C. Hodge, A. Fenster, and D. B. Downey, Ladak Prostate boundary segmentation from ultrasound images using 2D active shape models: Optimisation and extension to 3D, Comput. Methods Programs Biomed, vol.84, pp.2-3, 2006.

O. Acosta, G. Drean, D. Juan, A. Ospina, and P. Simon, Haigron and Caroline Lafond and Renaud de Crevoisier Voxel-based population analysis for correlating local dose and rectal toxicity in prostate cancer radiotherapy, Physics in Medicine and Biology, issue.8, pp.58-2581, 2013.

V. Beckendorf, J. M. Bachaud, P. Bey, S. Bourdin, C. Carrie et al., Simon Target-volume and critical-organ delineation for conformal radiotherapy of prostate cancer: experience of French dose-escalation trials Cancer Radiother, pp.78-92, 2002.

M. Bagshaw, R. Cox, and J. Ramback, Radiation therapy for localized prostate cancer Justification by long-term follow-up, Urol Clin North Am, vol.17, issue.4, pp.787-802, 1990.

C. Perez, J. Michalski, and D. Mansur, Clinical assessment of outcome of prostate cancer (TCP, NTCP), Rays, vol.30, issue.2, pp.109-129, 2005.

D. Zhang, Review of shape representation and description techniques, Pattern Recognition, vol.37, issue.1, pp.1-19, 2004.
DOI : 10.1016/j.patcog.2003.07.008

W. D. Heemsbergen, Urinary Obstruction in Prostate Cancer Patients From the Dutch Trial (68 Gy vs. 78 Gy): Relationships With Local Dose, Acute Effects, and Baseline Characteristics, International Journal of Radiation Oncology*Biology*Physics, vol.78, issue.1, 2010.
DOI : 10.1016/j.ijrobp.2009.07.1680

O. Acosta, Atlas Based Segmentation and Mapping of Organs at Risk from Planning CT for the Development of Voxel-Wise Predictive Models of Toxicity in Prostate Radiotherapy, Prostate Cancer Imaging MICCAI 2010, pp.42-51, 2010.
DOI : 10.1007/978-3-642-15989-3_6

URL : https://hal.archives-ouvertes.fr/hal-00910242

A. Bayley, T. Rosewall, T. Craig, R. Bristow, P. Chung et al., Clinical Application of High-Dose, Image-Guided Intensity-Modulated Radiotherapy in High-Risk Prostate Cancer, International Journal of Radiation Oncology*Biology*Physics, vol.77, issue.2, pp.477-83, 2010.
DOI : 10.1016/j.ijrobp.2009.05.006

J. Bilmes and A. , Gentle Tutorial of the EM Algorithm and its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models, Tech. Rep, 1998.

M. Costa, . Jimena, . Delingette, . Hervé, . Novellas et al., Automatic Segmentation of Bladder and Prostate Using Coupled 3D Deformable Models, MICCAI 2007, pp.252-260, 2007.
DOI : 10.1007/978-3-540-75757-3_31

URL : https://hal.archives-ouvertes.fr/inria-00616041

T. Cootes and C. Taylor, <title>Statistical models of appearance for medical image analysis and computer vision</title>, Medical Imaging 2001: Image Processing, pp.236-248, 2001.
DOI : 10.1117/12.431093

M. Söhn, Dosimetric treatment course simulation based on a statistical model of deformable organ motion, Physics in Medicine and Biology, vol.57, issue.12, p.3693, 2012.
DOI : 10.1088/0031-9155/57/12/3693

D. Collier, S. Burnett, M. Amin, and S. Bilton, Assessment of consistency in contouring of normaltissue anatomic structures, Journal of Applied Clinical Medical Physics, vol.4, 2003.

C. Fiorino, M. Reni, A. Bolognesi, G. M. Cattaneo, and R. Calandrino, Intra- and inter-observer variability in contouring prostate and seminal vesicles: implications for conformal treatment planning, Radiotherapy and Oncology, vol.47, issue.3, pp.285-292, 1998.
DOI : 10.1016/S0167-8140(98)00021-8

M. Langen and D. T. Jones, Organ motion and its management, International Journal of Radiation Oncology*Biology*Physics, vol.50, issue.1, pp.265-278, 2001.
DOI : 10.1016/S0360-3016(01)01453-5

G. Bueno and A. Martínez-albalá, Adán Fuzzy-snake segmentation of anatomical structures applied to ct images ICIAR, pp.33-42, 2004.

X. Gual-arnau, I. Gual, and F. Lliso, Roldán S Organ contouring for prostate cancer: Interobserver and internal organ motion variability Computerized Medical Imaging and Graphics, pp.29-639, 2005.

M. Guckenberger and M. Flentje, Intensit??tsmodulierte Strahlentherapie des lokal begrenzten Prostatakarzinoms. Aktueller Stand und Entwicklungen, Strahlentherapie und Onkologie, vol.183, issue.2, pp.57-62, 2007.
DOI : 10.1007/s00066-007-1631-3

S. Chen, D. M. Lovelock, and R. J. Radke, Segmenting the prostate and rectum in CT imagery using anatomical constraints, Medical Image Analysis, vol.15, issue.1, pp.1-11, 2011.
DOI : 10.1016/j.media.2010.06.004

S. Chen, D. M. Lovelock, and R. J. Radke, Segmenting the prostate and rectum in CT imagery using anatomical constraints, Medical Image Analysis, vol.15, issue.1, pp.1-11, 2011.
DOI : 10.1016/j.media.2010.06.004

T. Rohlfing and . Maurer, CR Multi-classifier framework for atlas-based image segmentation Pattern Recognition Letters, pp.2070-2079, 2005.

W. Li, S. Liao, Q. Feng, W. Chen, and D. Shen, Learning image context for segmentation of the prostate in CT-guided radiotherapy, Physics in Medicine and Biology, vol.57, issue.5, p.1283, 2012.
DOI : 10.1088/0031-9155/57/5/1283

B. Davis, M. Foskey, J. Rosenman, L. Goyal, S. Chang et al., Automatic Segmentation of Intra-treatment CT Images for Adaptive Radiation Therapy of the Prostate, Med Image Comput Comput Assist Interv, vol.8, pp.442-50, 2005.
DOI : 10.1007/11566465_55

S. Joshi, S. Pizer, P. T. Fletcher, P. Yushkevich, A. Thall et al., Multiscale deformable model segmentation and statistical shape analysis using medial descriptions, IEEE Transactions on Medical Imaging, vol.21, issue.5, pp.2012-538
DOI : 10.1109/TMI.2002.1009389

F. Martínez, O. Acosta, G. Dréan, S. Antoine, H. Pascal et al., Segmentation of pelvic structures from planning CT based on a statistical shape model with a multiscale edge detector and geometrical likelihood measures. Image-Guidance and Multimodal Dose Planning in Radiation Therapy, 2012.

P. Fillard, . Pennec, and A. Xavier, Fast and Simple Calculus on Tensors in the Log-Euclidean Framework Arsigny, Nicholas Medical Image Computing and Computer-Assisted Intervention MICCAI, pp.115-122, 2005.

M. Rousson, A. Khamene, . Diallo, . Mamadou, J. Celi et al., Constrained Surface Evolutions for Prostate and Bladder Segmentation in CT Images. Computer Vision for Biomedical Image Applications, 2005.

V. Pekar, T. R. Mcnutt, and M. R. Kaus, Automated model-based organ delineation for radiotherapy planning in prostatic regions, Int. J. Radiat. Oncol. Biol. Phys, vol.3, pp.973-980, 2004.

Q. Feng, M. Foskey, . Tang, C. Songyuan, . Wufan et al., Dinggang: Segmenting CT prostate images using population and patient-specific statistics for radiotherapy deformable models, IEEE ISBI, pp.282-285, 2009.

D. Bystrov, Simultaneous fully automatic segmentation of male pelvic risk structures, In: Estro. European society for Radioherapy and oncology, 2012.

. Rohlfing, Multi-classifier framework for atlas-based image segmentation. Computer Vision and Pattern Recognition, IEEE Computer Society Conference on, vol.1, pp.255-260, 2004.

X. Han and . Hoogeman, Atlas-Based Auto-segmentation of Head and Neck CT Images, pp.434-441, 2008.
DOI : 10.1007/978-3-540-85990-1_52

I. Isgum, Multi-Atlas-Based Segmentation With Local Decision Fusion&#x2014;Application to Cardiac and Aortic Segmentation in CT Scans, IEEE Transactions on Medical Imaging, vol.28, issue.7, pp.1000-1010, 2009.
DOI : 10.1109/TMI.2008.2011480

O. Acosta, Evaluation of multi-atlas-based segmentation of CT scans in prostate cancer radiotherapy, 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp.1966-1969, 2011.
DOI : 10.1109/ISBI.2011.5872795

URL : https://hal.archives-ouvertes.fr/hal-00908596

T. Heimann and H. P. Meinzer, Statistical shape models for 3D medical image segmentation: A review, Medical Image Analysis, vol.13, issue.4, pp.543-563, 2009.
DOI : 10.1016/j.media.2009.05.004

M. Sohn, Modelling individual geometric variation based on dominant eigenmodes of organ deformation: implementation and evaluation, Physics in Medicine and Biology, vol.50, issue.24, p.5893, 2005.
DOI : 10.1088/0031-9155/50/24/009

C. Lorenz, Generation of Point-Based 3D Statistical Shape Models for Anatomical Objects, Computer Vision and Image Understanding, vol.77, issue.2, pp.175-191, 2000.
DOI : 10.1006/cviu.1999.0814

S. Ourselin, Reconstructing a 3D structure from serial histological sections, Image and Vision Computing, vol.19, issue.1-2, pp.25-31, 2001.
DOI : 10.1016/S0262-8856(00)00052-4

URL : https://hal.archives-ouvertes.fr/cea-00333669

T. Lindeberg, Feature detection with automatic scale selection, International Journal of Computer Vision, vol.30, issue.2, pp.79-116, 1998.
DOI : 10.1023/A:1008045108935

. Ter-haar-romeny, Scale space: Its natural operators and differential invariants, Colchester.: Information Processing in Medical Imaging, pp.239-255, 1991.
DOI : 10.1007/BFb0033757

D. Rueckert, Nonrigid registration using free-form deformations: application to breast MR images, IEEE Transactions on Medical Imaging, vol.18, issue.8, pp.712-721, 1999.
DOI : 10.1109/42.796284

M. Wu, C. Rosano, P. Lopez-garcia, C. S. Carter, and H. J. , Optimum template selection for atlas-based segmentation, NeuroImage, vol.34, issue.4, pp.1612-1618, 2007.
DOI : 10.1016/j.neuroimage.2006.07.050

S. Liao, Y. Gao, and D. Shen, Sparse Patch Based Prostate Segmentation in CT Images Medical Image Computing and Computer-Assisted Intervention MICCAI, pp.385-392, 2012.

Y. Gao and S. Liao, Dinggang Shen Prostate segmentation by sparse representation based classification Medical Image Computing and Computer-Assisted Intervention MICCAI, pp.451-458, 2012.

J. P. Thirion, Image matching as a diffusion process: an analogy with Maxwell's demons, Medical Image Analysis, vol.2, issue.3, pp.243-260, 1998.
DOI : 10.1016/S1361-8415(98)80022-4