Unsupervised Bayesian decomposition of multiunit EMG recordings using Tabu search.

Abstract : Intramuscular electromyography (EMG) signals are usually decomposed with semiautomatic procedures that involve the interaction with an expert operator. In this paper, a Bayesian statistical model and a maximum a posteriori (MAP) estimator are used to solve the problem of multiunit EMG decomposition in a fully automatic way. The MAP estimation exploits both the likelihood of the reconstructed EMG signal and some physiological constraints, such as the discharge pattern regularity and the refractory period of muscle fibers, as prior information integrated in a Bayesian framework. A Tabu search is proposed to efficiently tackle the nondeterministic polynomial-time-hard problem of optimization w.r.t the motor unit discharge patterns. The method is fully automatic and was tested on simulated and experimental EMG signals. Compared with the semiautomatic decomposition performed by an expert operator, the proposed method resulted in an accuracy of 90.0% +/- 3.8% when decomposing single-channel intramuscular EMG signals recorded from the abductor digiti minimi muscle at contraction forces of 5% and 10% of the maximal force. The method can also be applied to the automatic identification and classification of spikes from other neural recordings.
Type de document :
Article dans une revue
IEEE Transactions on Biomedical Engineering, Institute of Electrical and Electronics Engineers, 2010, 57 (3), pp.561-71. 〈10.1109/TBME.2009.2022277〉
Liste complète des métadonnées

Littérature citée [27 références]  Voir  Masquer  Télécharger

http://www.hal.inserm.fr/inserm-00954651
Contributeur : Di Ge <>
Soumis le : lundi 3 mars 2014 - 12:33:32
Dernière modification le : mardi 19 juin 2018 - 16:50:02
Document(s) archivé(s) le : mardi 3 juin 2014 - 10:50:43

Fichier

EMG_Tabu.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Di Ge, Eric Le Carpentier, Dario Farina. Unsupervised Bayesian decomposition of multiunit EMG recordings using Tabu search.. IEEE Transactions on Biomedical Engineering, Institute of Electrical and Electronics Engineers, 2010, 57 (3), pp.561-71. 〈10.1109/TBME.2009.2022277〉. 〈inserm-00954651〉

Partager

Métriques

Consultations de la notice

471

Téléchargements de fichiers

220