D. Ge, E. L. Carpentier, and D. Farina, Unsupervised Bayesian Decomposition of Multi-Unit EMG Recordings using Tabu Search, IEEE Trans. Biomed Eng, vol.57, issue.3, pp.561-517, 2010.

M. S. Lewicki, A review of methods for spike sorting: the detection and classification of neural action potentials, Network: Computation in Neural Systems, vol.9, issue.4, pp.53-78, 1998.
DOI : 10.1088/0954-898X_9_4_001

R. Quian-quiroga, Z. Nadasdy, and Y. Ben, Unsupervised Spike Detection and Sorting with Wavelets and Superparamagnetic Clustering, Neural Computation, vol.84, issue.8, pp.1661-1687, 2004.
DOI : 10.1016/0370-2693(89)91563-3

M. S. Lewicki, Bayesian Modeling and Classification of Neural Signals, Neural Computation, vol.12, issue.5, pp.1005-1030, 1994.
DOI : 10.1109/78.120795

I. Bankman, K. Johnson, and W. Schneider, Optimal detection, classification, and superposition resolution in neural waveform recordings, IEEE Transactions on Biomedical Engineering, vol.40, issue.8, pp.836-841, 1993.
DOI : 10.1109/10.238472

R. Chandra and L. Optican, Detection, classification, and superposition resolution of action potentials in multiunit single-channel recordings by an on-line real-time neural network, IEEE Transactions on Biomedical Engineering, vol.44, issue.5, pp.403-412, 1997.
DOI : 10.1109/10.568916

F. A. Atiya, Recognition of multiunit neural signals, IEEE Transactions on Biomedical Engineering, vol.39, issue.7, pp.723-729, 1992.
DOI : 10.1109/10.142647

K. C. Mcgill, Optimal resolution of superimposed action potentials, IEEE Transactions on Biomedical Engineering, vol.49, issue.7, pp.640-650, 2002.
DOI : 10.1109/TBME.2002.1010847

K. C. Mcgill, Z. C. Lateva, and H. R. Marateb, EMGLAB: An interactive EMG decomposition program, Journal of Neuroscience Methods, vol.149, issue.2, pp.121-133, 2005.
DOI : 10.1016/j.jneumeth.2005.05.015

S. Takahashi, Y. Anzai, and Y. Sakurai, Automatic Sorting for Multi-Neuronal Activity Recorded With Tetrodes in the Presence of Overlapping Spikes, Journal of Neurophysiology, vol.89, issue.4, pp.2245-2258, 2003.
DOI : 10.1152/jn.00827.2002

S. Takahashi and Y. Sakurai, Real-time and automatic sorting of multi-neuronal activity for sub-millisecond interactions in vivo, Neuroscience, vol.134, issue.1, pp.301-315, 2005.
DOI : 10.1016/j.neuroscience.2005.03.031

S. Takahashi, Y. Sakurai, M. Tsukada, and Y. Anzai, Classification of neuronal activities from tetrode recordings using independent component analysis, Neurocomputing, vol.49, issue.1-4, pp.289-298, 2002.
DOI : 10.1016/S0925-2312(02)00528-3

A. Holobar and D. Zazula, Correlation-based decomposition of surface electromyograms at low contraction forces, Medical & Biological Engineering & Computing, vol.51, issue.6, pp.487-495, 2004.
DOI : 10.1007/BF02350989

A. Holobar, D. Farina, M. Gazzonib, R. Merlettib, and D. Zazula, Estimating motor unit discharge patterns from high-density surface electromyogram, Clinical Neurophysiology, vol.120, issue.3, pp.551-562, 2009.
DOI : 10.1016/j.clinph.2008.10.160

D. Farina and D. Falla, Effect of muscle-fiber velocity recovery function on motor unit action potential properties in voluntary contractions, Muscle and nerve, pp.650-658, 2008.
DOI : 10.1002/mus.20948

J. J. Kormylo and J. M. , Maximum-Likelihood Seismic Deconvolution, IEEE Transactions on Geoscience and Remote Sensing, vol.21, issue.1, pp.72-82, 1983.
DOI : 10.1109/TGRS.1983.350532

Q. Cheng, R. Chen, and T. Li, Simultaneous wavelet estimation and deconvolution of reflection seismic signals, IEEE Transactions on Geoscience and Remote Sensing, vol.34, issue.2, pp.377-384, 1996.
DOI : 10.1109/36.485115

F. Champagnat, Y. Goussard, and J. Idier, Unsupervised deconvolution of sparse spike trains using stochastic approximation, IEEE Transactions on Signal Processing, vol.44, issue.12, pp.2988-2998, 1996.
DOI : 10.1109/78.553473

S. Bourguignon and H. Carfantan, Bernoulli-gaussian spectral analysis of unevenly spaced astrophysical data, IEEE/SP 13th Workshop on Statistical Signal Processing, 2005, pp.811-816, 2005.
DOI : 10.1109/SSP.2005.1628705

G. Kail, C. Novak, B. Hofer, F. Hlawatsch, and R. O. , Blind Monte Carlo detection-estimation method for optical coherence tomography, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, pp.493-496, 2009.
DOI : 10.1109/ICASSP.2009.4959628

K. C. Mcgill, K. L. Cummins, and L. J. Dorfman, Automatic Decomposition of the Clinical Electromyogram, IEEE Transactions on Biomedical Engineering, vol.32, issue.7
DOI : 10.1109/TBME.1985.325562

K. C. Mcgill and L. J. Dorfman, High-Resolution Alignment of Sampled Waveforms, IEEE Transactions on Biomedical Engineering, vol.31, issue.6, pp.462-468, 1984.
DOI : 10.1109/TBME.1984.325413

F. Wood and M. J. Black, A nonparametric Bayesian alternative to spike sorting, Journal of Neuroscience Methods, vol.173, issue.1, pp.1-12, 2008.
DOI : 10.1016/j.jneumeth.2008.04.030

D. Ge, Déconvolution impulsionnelle multi-source. Application aux signaux électromyographiques, 2009.

P. J. Green, Reversible jump Markov chain Monte Carlo computation and Bayesian model determination, Biometrika, vol.82, issue.4, pp.711-732, 1995.
DOI : 10.1093/biomet/82.4.711

C. P. Robert and G. Casella, Monte Carlo Statistical Methods, Springer Texts in Statistics, 2004.

L. Tierney, Markov Chains for Exploring Posterior Distributions, The Annals of Statistics, vol.22, issue.4, pp.1701-1728, 1994.
DOI : 10.1214/aos/1176325750

D. Farina, A. Crosetti, and R. Merletti, A model for the generation of synthetic intramuscular EMG signals to test decomposition algorithms, IEEE Transactions on Biomedical Engineering, vol.48, issue.1, pp.66-77, 2001.
DOI : 10.1109/10.900250

C. J. Luca, A. Adam, R. Wotiz, L. D. Gilmore, and S. H. Nawab, Decomposition of Surface EMG Signals, Journal of Neurophysiology, vol.96, issue.3, pp.1646-1657, 2006.
DOI : 10.1152/jn.00009.2006

C. T. Moritz, B. K. Barry, M. A. Pascoe, and R. M. Enoka, Discharge Rate Variability Influences the Variation in Force Fluctuations Across the Working Range of a Hand Muscle, Journal of Neurophysiology, vol.93, issue.5, pp.2449-2459, 2005.
DOI : 10.1152/jn.01122.2004

A. J. Fuglevand, D. A. Winter, and A. E. Patla, Models of recruitment and rate coding organization in motor-unit pools, J. Neurophysiol, vol.70, issue.6, pp.2470-2488, 1993.

J. L. Dideriksen, D. Falla, M. Baekgaard, M. L. Mogensen, K. L. Steimle et al., Comparison between the degree of motor unit short-term synchronization and recurrence quantification analysis of the surface EMG in two human muscles, Clinical Neurophysiology, vol.120, issue.12, pp.2086-2092, 2009.
DOI : 10.1016/j.clinph.2009.09.011

R. Lefever and C. De-luca, A Procedure for Decomposing the Myoelectric Signal Into Its Constituent Action Potentials - Part I: Technique, Theory, and Implementation, IEEE Transactions on Biomedical Engineering, vol.29, issue.3, pp.149-157, 1982.
DOI : 10.1109/TBME.1982.324881

R. M. Studer, R. J. De-figueiredo, and G. S. Moschytz, An Algorithm for Sequential Signal Estimation and System Identification for EMG Signals, IEEE Transactions on Biomedical Engineering, vol.31, issue.3, pp.285-295, 1984.
DOI : 10.1109/TBME.1984.325267