N

HAL

open science

Spike sorting by stochastic simulation.

Di Ge, Eric Le Carpentier, Jérome Idier, Dario Farina

» To cite this version:

Di Ge, Eric Le Carpentier, Jérome Idier, Dario Farina.
IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2011, 19 (3), pp.249-59.

10.1109/TNSRE.2011.2112780 . inserm-00954647

HAL Id: inserm-00954647
https://inserm.hal.science/inserm-00954647
Submitted on 3 Mar 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Spike sorting by stochastic simulation..


https://inserm.hal.science/inserm-00954647
https://hal.archives-ouvertes.fr

Spike Sorting by Stochastic Simulation

Di Ge, Eric Le Carpentier, Jérdme Idigviémber, IEEE and Dario Farinagenior Member, IEEE

Abstract—The decomposition of multiunit signals con- The decomposition problem of multiunit recordings,
sists of the restoration of spike trains and action po- often referred to as spike sorting, is usually solved with
tentials in neural or muscular recordings. Because of template matching approaches [2]. In some of these
the complexity of automatic decomposition, semiautomatic annhroaches, the action potentials that are overlapped in
procedures are sometimes chosen. The main difficulty in \0 516 ot classified and are considered outliers [3].

automatic decomposition is the resolution of temporally When th b f . I this limitati
overlapped potentials. In a previous study [1], we proposed en the number of sources 1S small, this fimiation

a Bayesian model coupled with a maximuma pogteri- May provide an acceptable amount of information on
ori (MAP) estimator for fully automatic decomposition the sources under study. However, when there are many

of multiunit recordings and we showed applications to sources active concurrently, overlapped action potential
intramuscular EMG signals. In this study, we propose a constitute the majority of the potentials in the recorded
more complex signal model that includes the variability signals. Therefore, in some template matching methods,
in amplitude of each unit potential. Moreover, we propose the superpositions are resolved by iterative subtraction
the Markov Chain Monte Carlo (MCMC) simulationanda ot 5| hossible template combinations from unidentified
Bayesian minimum mean square error (MMSE) estimator waveforms [4], [5]. As an alternative, neural network

by averaging on samples that converge in distribution to lassifi lied t ve th iti b
the joint posterior law. We prove the convergence property classiiiers are applied o resoive the Superposition prob-

of this approach mathematically and we test the method 1M by introducing overlapped spikes into the training
representatively on intramuscular multiunit recordings. data [6].
The results showed that its average accuracy in spike The main challenge underlying the resolution of super-
identification is greater than 90% for intramuscular signals  imposed spikes is that the global optimization problem is
with up to 8 concurrently active units. In addition to non-deterministic polynomial-type (NP) hard, i.e., it ean
intra.\muscular signals, the me’ghoq can be_ applied for spike ot be solved by polynomial complexity algorithms [1].
sorting of other types of multiunit recordings. Therefore, the existing methods either perform on the
Index Terms—Bayesian model, MMSE estimation, restrained search spaces [4], [7], which reduces the
Mar.k.ov chain Monte Carlo, intramuscular EMG decom-  complexity, or are based on recursive algorithms [8],
position [9] with specific trial strategies and residual threshold
estimations. For example, Atiya [7] proposed a robust
I. INTRODUCTION approach for decomposing overlaps of action potentials

Invasive electrodes inserted into the brain, nerves, g neural recordings by comparing all possible combi-
muscles provide multiunit recordings consisting of thations of up to two action potentials (restrained search

activity of neural cells or muscle fibers that respond Pace)- Within the family of spike sorting algorithms,
the activity of motor neurons. In several applicationss it 1€ dynamic programming method [4], which uses the

necessary to decompose these multiunit recordings iffist exploration technique of a k-d tree, is also limited
the individual sources, i.e. to identify the individual unity the memory space necessary to generate such data
spike trains from the interference signal. For examplglructure, resulting in practice in an equally restrained
the decomposition of intramuscular recordings provid€§arch space of up to two overlapping action potentials.

information on the behavior of spinal motor neurond Nis constraint is not justified in several applications.
Similar issues arise when determining a representative
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until it is able to prove that it has found the globatliscrete parameters (discharge instants) using samples
optimum [8]. To avoid too long recursions in cases dhat converge in distribution to the joint posterior law.
difficult spike superpositions, the algorithm stops anthe study also provides the mathematical proof of the
requires an expert intervention after a number of triat®nvergence property of this approach. As in [1], the pro-
without reaching the lower bound value. posed method is representatively tested on intramuscular
Other methods make use of independent componemiltiunit recordings, although it can also be directly ap-
analysis (ICA), of clustering and ICA [10], [11], [12] toplied to other multiunit signals. The test on intramuscular
avoid the limitation on the number of units concurrentiEMG signals will allow a direct performance comparison
active and the need for the intervention of an operatovith the MAP estimator previously proposed [1]. The
However, these methods are applied to multi-chanmehkin part of the validation is performed on experimental
recordings. Similarly, blind source separation (BSS) agata, however we also present results on EMG signals
proaches such as the Convolution Kernel Compensat&imulated with very irregular spike trains as a proof of
(CKC) used for surface EMG decomposition [13], [14]its robustness.
are usually applied to multi-channel recordings for which
at least as many channels as sources are needed. I|l. MODEL WITH VARIABLE IMPULSE MAGNITUDES

A Bayesian model coupled with a maximuarposteri-  The generation of a multiunit recording is schemati-
ori (MAP) estimator was recently proposed for fully aucally represented in Fig. 1. Each impulse train is con-
tomatic decomposition of multiunit recordings in singleyolved by a characteristic action potential whose shape

channel signals [1]. The method was tested on intramys-assumed to vary minimally during the recording.
cular EMG recordings to identify individual motor unit

spike trains and proved to have similar performance as Action Potentialh,

obtained with a semi-automatic decomposition by expert — /L/ noisee
impulse trains;

operators [1]. Furthermore, the number of concurrent

action potentials was not limited although the search
space augmented exponentially.

One assumption of the Bayesian model in [1] is that Action Potentialh
action potentials discharged by a unit have the same !
amplitude and shape for the entire recording. However, —>\/\/L
although the shape of action potentials may not change impulse trainsy
substantially, the amplitude may be variable in sonmyg. 1. Multiunit direct model.
conditions. For example, the amplitude of single motor
unit action potentials in intramuscular EMG may be in- The direct problem model can thus be expressed
fluenced by the rate of discharge because of the velocifgathematically as a convolution product:
recovery function of muscle fibers [15]. Moreover, small I
displacements of the recording electrodes with respect to z = Z h;xs; +¢€ 1)
the sources may influence action potential amplitude. i=1

In this study, we address the spike sorting problem {ghere 2 is the recorded signal of lengthV, s;,i =
single-channel recordings by proposing a more complgX .. 7 andh;,i = 1,...,I are the impulse trains (the
signal model than in [1]. This model includes the varidischarge patterns) and their linear filters (action poten-
ability in magnitudes of each unit potential to providgals) respectively. Note that in the present study, the
a better fit with the experimental signals in a leasfmpulses ins; can have different amplitudes reflecting
squared-residual sense. Since action potentials may &% amplitude variation of the different action potentials
change in shape, which is not modeled, this new modglthe train.(e); denotes the sefe,i = 1...,1}, e.g.,

is not expected to provide a perfect fit. However, it i§3i)i = {s;,i = 1...,I} gathers the discharge patterns
hypothesized that it would provide better overall perfopf all impulse trains.

mance compared with the invariant amplitude and shapeassuming thate is an independent, identically dis-
model. Moreover, instead of the MAP estimator [1], Weibuted (i.i.d.) Gaussian noise with unknown variance

propose a new approach for the solution of the spike, the likelihood of the data, given the source parame-
sorting problem. The approach is based on the Mafkﬂé’rs(si,hi)i,a? can be written:

Chain Monte Carlo (MCMC) simulation tool to build 1 oS einy |2
a minimum mean square error (MMSE) estimator for P(z|(s;, h;)i,0%) = ——e€ 202 )
continuous parameters and a marginal MAP estimator for (2mo?)

z (single-channel)

olz



A. Prior laws on parameters A5) among all the admissible solutions satisfying the

The modeling of the impulse traing;); is based on refractory period condition, spike trains that are
the following assumptions and notations: more regularly spaced are favored. Following [1],

Al) (s;); are supposed mutually independent discrete this is achleved by a Gaussian-shaped distribution
time impulse trains; on the variables;; — Tk.

A2) the coordinates of non-zero elements (discrete dis?€ resulting law ote; (in a discrete, regularly sampled
charge instants) in each are contained in a vectortime framework) for each unit can be written:

noted asw;; P (i | mi,0?) o le(xy) £ "5 Y
A3) eachs; conditional tox; ando—zi is supposed to be o
a truncated Gaussian:

S; ’wuai ~ N(lmi,aidiag(lwi)) ‘1g,50 ()

n;—

1
exp § — (€41 —xij—mi—Tr)* p (4)
1

1

202 £
=
where1,, is binary vector with ones at positionswhere oo )
x;, and diag(15,) is the diagonal matrix whose fo e = Z exp <_k_>7
diagonal isl,. o 207

The sparsity in each spike train is modeled by the vector o — (@

x;, whereas the variability in the amplitude of Spikeﬁdmissiblem’i

generated by the same source is taken into accoynt

via the conditional Gaussian law (Eq.(3)). We note tha

k:—mi
x; j+1 —x;; > Tg for all j} is the set of
satisfying the refractory period condition,
is the indicator function o€:

negative magnitudes are not relevant in spike sorting, le(a;) = "ﬁll

thus the law of the magnitudes should be a Gaussian W)= 1L Heigra—@ig>Tr}

truncated to the positive hyperoctang,., 15.>o imposes _ =t _ o

a non-negative constraint on each elemens;of Contrarily to the BG case, a spike trai is no more

In the literature, the Bernoulli-Gaussian (BG) modél" i--d. sequence, because the discharge insignase
has been adopted for the restoration of a sparse dKi independent. In the BG deconvolution framework, a
magnitude variable train [16], [17], [18], [19]. The BGcomparable model callesiodified Bernoulli procesisas

model first defines the discharge instantsusing the P€en proposed in [20] to impose the minimum distance

Bernoulli law: constraint on the impulse train. The integration constant
N fm.,-2 depends on bothn; and o2. In practice, the
P(x;) = A" (1= )" ™ following approximation can be adopted:
g app p

wheren; = dim(xz;) denotes the unknown number of +eo k2

discharges, and < (0, 1) the Bernoulli parameter; and Jmio? N/ < )

then defines; conditionally tox; as a Gaussian variable, +00 12

in the same manner as in Eq. (3). Let us remark that ~/ <

a Gaussian random variable with zero-variance corre- ]

sponds to a variable of constant value (the Gaussidhder the assumptions that

meanm), for which the distribution can also be defined * ¢i is large enough to ignore the discretization error;

as a Dirac. e.g.,for o; = 10ms and a sampling frequency of
On the other hand, the Bernoulli model needs also 10kHz, the3s Gaussian lobe is discretized 690

adaptations when used for neural spike trains, in order Samples;

to account for physiological constraints. In this study, ® oi/m; is small enough to ignore the integral trun-

the model of the impulse instants;); is based on the ~ cation at—m;, typically if ;/m; < 1/3, then the

following assumptions: truncation error is controlled @t135%.

A4) the inter-spike interval(ISl) Ti; = ;41 — xij, Finally, in orde_r_to define a proper pr.obability, Eq. (_4)
or the temporal distance between two consecutisould be modified to incorporate a prior law on the first
impulses of the same source, is assumed to be largi§charge instant;;. Here we suppose it is uniform for
than a threshold valu&s. This value representsthe sake of simplicity.
the refractory periodneeded to discharge the spikes USing the independence assumption Al, we obtain:
and thus depends on the specific applicatiew;., I
for intramuscular EMG decomposition, it is the P((z)i| (mi,o?)i) :HP(a:i\mi,a?). (6)
absolute refractory period of muscle fibers; i=1



B. Joint posterior law I1l. PREPROCESSING

In the Bayesian framework, the posterior distribution The resolution of superimposed spikes and complete
P(0|z) for © = {(xi,8i,ms, 02, hi,02);,02} can be decomposition is preceded by a preprocessing phase.

expressed: The preprocessing consists of: 1) filtering the signal to
enhance spike train activities, 2) segmenting the filtered
P(O]z) « P(z| (s, hi)i, 02)P(c?) signal into temporal intervals containing spikes [21],

[9], 3) classifying isolated individual spikes (those not

L1 P(sil i 02 )P(o3,)P(xi| mi, o7) P(mi)P(07) P(hi) overlapped temporally with others) to determine the

‘ 7) number of units/ and the approximate spike shape for
each classhl(.o).

Fig. 2 illustrates the hierarchical Bayesian model with all 1€ Preprocessing steps described above have robust

intervening parameters, among which unknown paran%glutions described in the literature. The thresholding
ters (in©) are circled. The decomposition task consist8€thod proposed in [21] was adopted in this study for
of deriving an estimato® from Eq. (7). We note that the segmentation. The classification of isolated action

O contains both continuous and discrete parameters &fientials can be performed with several techniques.
that the combinatorial nature ofx;);, precludes the For example, the canonically registered discrete Fourier

exhaustive exploration method even in one segment [Fgnsform (CRDFT) [22] or non-parametric Bayesian

Egs. (2), (3) and (4) provide the likelihood term an?Stl[matlontéNdPB% [2,[?1].’ have beer214prc;\;]en 0 tl)et' ef-
the prior laws on(s;,z;); that enter the joint poste- ective methods for this purpose [24]. These solutions

rior (7). For the remaining terms, we choose conjuga&%r segmentation and classification of isolated spikes
priors with non-informative hyper-parametefis;, 5;);, ave excellent performance and do not need substantial

9 o : . ._improvements. Therefore, the methods described in [21]
((:Oﬁso’if;’)yo’ao’ah) (see [1] for a discussion on thISand [22] have been used in this study for preprocessing.
' On the contrary, the decomposition of temporally over-
L 9 . ) o lapped spikes poses more challenges and is the main
m; N(é‘o’ 70); h; N(?i »0h), contribution of this study, as described in the following.
a; ~ Y aiaﬁi% O¢ ™~ Y 046755)’

2
o5, ~IG(as, Bs), IV. DECOMPOSITION OF OVERLAPPED POTENTIALS

USING MCMC
whereZg stands for the inverse Gamma distribution and .
I is an identity matrix of appropriate sizéh(o))- denote Markov chain I\_/Ion'Fe Car_lo (MCM.C) methods are a
. ym pprop e lass of stochastic simulation algorithms used to con-
approximate spike shapes that are determined by

. tep d bed in the followi i fuct a Markov chain whose stationary distribution is
preprocessing step described in the foflowing Section, 4 riant and converges to the desired distribution after

a number of iterations (burn-in period). The estimator is

mo, Ug

i B then calculated from valid sampleise(, those after the
burn-in period) and its quality improves as a function
@ @ of the sample population according to the Monte Carlo
/ principle. TheMetropolis-HastinggMH) and Gibbs al-
@ as, bs gorithms are among the most classic algorithms in the
h®, o2 o, Bs MCMC family, while Reversible Jump MCMGRJM-
@ CMCQC) [25] further extends the application field by in-

cluding variable dimension problems. These algorithms
constitute widely used numerical tools in the field of
Bayesian statistics and computational physics [26].

In the multiunit spike sorting context, the joint pos-

s terior law in Eq. (7) is considered as the distribution of

posterior likelihood interest. The Markov chain is generated usinéiabs
sampler, by re-sampling iteratively each parametedin
Fig. 2. Directed acyclic graph representing the hieraalfBayesian according to its posterior conditional law derived from
model. Unknown parameters are circled in the graph. Eq. (7) while fixing the other parameters. The choice of
conjugate prior laws ofi(m;, o2, h;, 02);, o>} facilitates

€ €




the re-sampling on continuous parameters (steps (6)-(T@p. 1): they respectively focus on its marginal condi-
of Tab. ). The conditional laws to sample steps (6}ional law and on the implementation of the Metropolis-
(10) are detailed in [1]. In particular, the conditional lawHastings step.
for m; and o? are, respectively, Gaussian and Inverse
Gamma if the two approximations (5) are satisfied. Marginal conditional law

The difficulty lies in the sampling of the discrete
parameters(a:i)gk)l. We denoteC;, as the set of firing

instants (aci)f.k) of all units in the k-th segment that s
satls(f_yk)the refractory period cgndﬂpn with respect to Z h; % s; — HS
(x;); /. Thus, each element id; yields a non-zero —

joint posterior probability according to Eq. (4). Let hereH — [H Ho i q of ut
us roughly evaluate the cardinality 6}, to stress the whereH = [H,,..., H;] is composed of convolution

. . (k) . matrices such thakt; x s; = H;s;, andS = [s1;...; sj]
computational burden of samplirig;).”’. Evenin a very .
. i .~ represents &I x 1 column vector by vertical concate-
favorable case for which at modtunits are active in

a segment of duration ofms sampled atiOkHz, we nation. In thek-th segment, the data generation can be

would have81* < |Ci| < 25, The inferior bound written:

corresponds to a subspace @f containing at most 2k — gk gk) 4 (k)
one impulse for each unit in the segment. For segment ) _ . k)
lengths that vary betwee# and 60ms and number of wh(%ez %)the signal in th%'th se%]kTentH =
units that varies betweeh and8, the cardinal oficy| [Hi »--- Hj’] andS®) = [si";...;5;"] denote the
is at least4.30 x 107 and 1.68 x 1022 in each case. corresponding submatrix & and subvector of.

Thus, sampling the conditional probabilities(af){* by ~ From Eq. (7), we ot{g;lin for each segmentthe
evaluating all probabilities in the sé} for each segment conditional law of(s;, ;);"” | rest. In the following, the

yields unrealistic computational load. termrest stands for the seft©, z}, except the concerned
To solve this problem, we propose a MetropoligP@rameters.

Hastings algorithm summarized in Tab. I. The algorith N () k)1 (k) 1y 2

explores a subspace 6f at each iteration Its validity isnﬂ)((s“w’)i \rest) > P<z (s ’hl)“af)

shown by verifying that the corresponding Markov chairl‘[ P<S§k) sz(k)ﬂi) P(:I:Z(k) | my, 02, $Z(—k))

remains irreducible: all configurations of non-zero prob-;

abilities (€ Cy) are explored with non-zero probabilities 1

regardless of the initial state. This proof is provided i< €XP (‘@

appendix. Consequently, the MCMC algorithm in Tab. | 1 ‘ ¢ *) (—k)

is a valid stochastic simulation algorithm, ldletropolis-  “*P (‘5(‘11 —1) V(ai - 1)) HP<‘”z' | mi, o7 @; )

Hastings within Gibbgype. ‘

We first rewrite the convolution sum in the following
matrix form:

12 Ga1H2> V3 8(a)

(8)
TABLE | where the k-th segment specific matrices are noted
STOCHASTIC SIMULATION ALGORITHM BY MCMC. . : S
without the superscriptk) for simplicity:
repeat _ (k) (k)
for k= 1...K( (30% I nt eg(jr)at e (s;); anal (y)ti cally G = {(H1 )mgm, s (Hy )mg’“)}
sample(z:)"”) ~ P((z:);" |©\{(s:)s, (x:);"'}, 2) % M — di —2 -2 -2 -2 )
end for V =diag([o, " ...,05°...,05 ...,05]]
Sample(si)i ~ P((s:)i| © \ (s:)i, 2) n{® )
Sample(hi); ~ P((hi)i|© \ (hi):, z) (k) (k)
Sampletot) ~ F((o4) 167 (03} ar = (@), ()0
ample(o?); ~ P((c): oi)i — S(k)
Sample(c?): ~ P((0%):| €\ (c2,).) a0 = 5T ar
2 2 2 . . . . .
Sampleo; ~ P(oc |0\ o¢, 2) §(-) denotes the multi-dimensional Dirac function, and
until number of iteration reached JA

n§ ) = dim(a:l(k)) is the number of impulses of ung:

In what follows, Sections IV-A and IV-B enter intom_ the se(gkgnerrﬁ. The v(;:ctorl IS a colutmnl V(:;:tor of
more details about the sampling ;)" (first step in size}_;n; while a1 anda, are, respectively, the non-

zero spike magnitudes of all units in the segment and its

“The superscript(k) and (—k) denote parameters in theth COmMplement{a,, ao} constitutes thus a permutation of
segment and parameters in all other segments, respectively spike trainsS (%),



Let us remark that matricés and'V are functions of B. Metropolis-Hastings step

(wi_)ik , (hi, 03,)i, but not of (). Itis thus possible e propose here a reversitMetropolis-Hastingstep
to integrate out firsti, and thena; in Eq. (8) since it 1, 40 the evaluation of all probabilities ¢f;)* ¢
is me_rely the pr_oduct of two exponential terms and thl&% The strategy is to explore rzazasonablesubspfalce of
remains Gaussian. B *) _ C), per iteration while the exploration of the whole space
The COﬂdI'[IC;ﬂBJ probability ofz;);” after marginal- - s mathematically guaranteed in the long run. We note
ization of (s;){") from Eq. (8) can be written: that this strategy can be adapted to the full model that
k k includes Gaussian variability in spike magnitudes.
P<(mi)l(' '[rest (s:); )> x Let w(u) C Ci, be the local subspace (to be specified

\Eﬁ exp (l(m)t(E)_lm _ 11tV1) hereaftgr) to explore for each iteration and thus_ contglns
2 2 accessible configurations from the current configuration,
(k) _ .
o3 P (wg’ﬂ |mi, 02, @ ’f)> (9) noted byu =1 w,...,1 ] of length! - dim(Seg,).
i It is constructed by concatenating spike trains of all units

in the segment. In Tab. II, P(u) denotes the conditional

here
W . ) . probability as specified by Eg. (9) and (10) for a partic-
XU =5 (G)G+V ular configurationu, F(u) the sum of probabilities of
m =3 (% (G) 2z 4 V1> the configurations iw(u), i.e., F(u) = Zy@(u) P(y),

andq(u — u™) the instrumental law or the probability
%! andm are, respectively, the variance and mean ef proposingu™ given the current state.. Note that
the Gaussian vectar;. Let us remark that the marginalzmew(u) q(u—ut) =1.

law in Eqg. (9) involvesy—! andm. In the special case
where(asz(.k))i = (), ¥~! andm cannot be defined. To TABLE I "
obtain the marginal distribution, we first rewrite Eq. (8): METROPOLISHASTINGS STEP TO SAMPLEw:); " IN TAB. |.

P((s(k)). -0 (m)(k) =0 rest) x exp <_ Hz(k)”2> 1: Proposeu — u* using the instrumental law:
zk Zk ) 20’E ( . +)_ 0 ifu+¢w(u)
5((32(- ))2) HP (mg ) = @|mi,ai2,.’1cl(-_ )). )= P(u™)/F(u) otherwise
‘ 2: Acceptu™ with probability
Integrating out(sgk)),- and considering kthe common pw s wh) = min{1, F(uw)/F(u™)}
exponential factor w.r.t. cases whefei)g ) # 0, its
marginal probability then can be written: In this application, we define(u) = {v | |u—v|; <
(k) _ (k) 2 and ||uly — |v|y| < 1} with | - |, the L1-norm. The
<(m )i 0] \ (50 ) following conditions are verified:

x HP (mgk) =0] mi,ag,mf—_k)> (10) 1) lu—v)1 =0 u=wv,s.t.ucw(u);
i 2) |u —v|; =1, adding or removing a spike;
Egs. (9) and (10) describe the marginal conditiond v — vli = 2 and |[ul; — |vli| < 1, shifting
probability of (z;)!*) up to a normalization factor. an existing spike in the same spike train or being

The termP(acZ(.k |mi702’m(—k)) can be directly de- replaced by a spike in another train;

rived from Eq. (4) and measures the regularity of tHg) ¥ € «w(v) < v € w(u), together with condition
1), assures the reversibility of the chain: for all pairs

binary sequenceél,, ); for each spike train while the "

Gaussian variability of magnitudes of the spikes is ex- (%:%") € Cr,

pressed in the first two terms in Eq. (9). Pw)K(u— ut) = P(uh)K(ut — u),
We recall that though the marginal conditional prob- N

ability of (z;) can be analytically expressed, its Where K(u — u™) denotes the transition kernel

combinatorial space makes it a hard problem either to derived from the Metropolis-Hastings step of Tab. I

maximize (as proposed in [1] using a Tabu search) or to @nd equals to:

simulate the distribution using the MCMC approach. The { P(ut)

) , u—ut)+ru)d,(ut) ut cwlu
next section proposes an MCMC algorithm that does not Flu) 2 ) r(u)du(uT) w(w)
sample directly according to the conditional probability,
but rather iteratively on local subspaces. (11)

otherwise



Pu®) TABLE Il

where r(u) = Z Fla) (1 — p(u — u+)) IMPLEMENTATION OF THEMCMC ALGORITHM.
utew(u)
. . . repeat
5) the Markov chain is irreducible: it is capable Of ‘for k =1,...,K do% for each segnent k
exploring the entire spacg, (see demonstration in % --- Metropolis-Hastings step---------
Appendix); 1,1 m]

EvaIuateP(u*),u*g € w(u) in Eq. (9) (10)
Fu <~ Zu+€w(u) P(u+)
Proposeu” ~ P(u™t)/Fu,u’ € w(u)

6) the Markov chain is also aperiodic since the kef
nel (11) satisfies:

" +
Vu, P(u) > 0= K(u = u) > 0. gﬁceﬁgﬁfﬁ&&iﬁﬁ&p = min {1, Fy/ P+ }
by verifying that% > 0 and p(u — u) = 1. [/SOSM'Z?%HQ ‘3“85 sanpling------
It is thus possible to have two consecutive samples i (2{"), + ¢ then
that are identical, and such a Markov chain cannpt G« [(Hgk))w(k),...,(H§’“>)m<k>
be periodic. d« [anonesl(ngk), 1),... ,asifones(nyc), 1)]
7) the complexity per iteration (measured hy(u)|) V + diag(d)
remains linear with respect to to the segment length 27 e 5G'G+V
dim(Seg,) and the number of units. Q «chol (271)‘:/,3)0“0' esky factor of X7
. . b« randn(>.n;”’,1)%iid Gaussian vector
In conclusion, the Markov chain generated from the % ai ~N(m, %), Eq. (9
proposed algorithm is irreducible, reversible and apefi- a1 <= Q QY (G'2™W /02 + V1) +b)
odic. Therefore the only equilibrium distribution /() [(_Sgk))wgk) o (81) ]
(which means from any initial state, K"(u,e) 2 ender;gr'f
P(e) [27, Theorem 1]). % - Sanpl i ng of remaining paraneters [1]

The numerical implementation of the spike decompo- ’Fl= [hl%thLhP“E(P(()hf)i | ft)es‘)

- . . . . or eaci iy Ty ™~ mg); | €S
sition algorithm is summarized in Tab. Ill. For eacho?, o2 ~ P((02); | res
For eacho?,, 02, ~ P((02,): | resh

. . 2 2
C. Bayesian estimators oc ~ P(oZ|resh

i | until number of iteration reached
With the convergence property of the Markov chain,
we thus obtain for each parameter & a population

of random samples distributed according to its margingdynensions since the number of detected spikes are not

posterior law P(- | z). For continuous parameterse., fixeq An alternative is to estimate binary sequences

O\ (@;, 5;);, @ minimum mean square err@stimator (4 . ysing a marginal component MAP detectbe,,
(MMSE) optimizes the following criterion: '

the marginal majority vote for each instant (component).
g =min [ |y - ol Ply| 2)dy

However, considering only one component marginally
at a time may result in counter-intuitive estimators. Sup-
= min Epy ) (Hy B y0”2) pose for example that in an interval, 2 < dim(J) <

Yo Tr, the probability that there is one and only one
= Epy|») (y) detected event id (3,7 P(s;; # 0) = 1) for a
Particular sample population. Further suppose that no
one event is more likely than the sum of the others
(in terms of probability), and thu$(s; ; # 0) < 0.5

According to the Monte Carlo principle, this estimato
is approximated by:

N N for all j € J. From these assumptions, it would then
Y=FEpy|z (y) = /yP(y|z)dy ~ Z Yi» follow that s, ; = 0 for all j € 7, using the marginal
j=No+1 component MAP detector. The result is clearly counter-

where {y;},=1.. ~n are simulated samplesy, and N intuitive because the probability that there is no event in

represent, respectively, the number of burn-in iteratiods is zero.

and the total number of iterations. In our tests, we fixed Recently, Kail et al. [20] proposed a MAP block

N = 2Ny = 200. detector. The main idea is to perform the majority
The same estimator, however cannot be applied on thete on a block of the binary variables ih,.. The

discrete parameter@e;); since averaged firing instantsnumber of binary combinations in each block should be

do not have any physical interpretation. Note that difauch smaller than the number of available samples (the

ferent samples may contain vectors(af;); of different Markov chain length) while the length of the block is



big enough to avoid false negatives using the marginal test the performance of the algorithm in cases of
component MAP detector due to spike shifts in theery irregular spike firings. The simulated signals were
sample population. The same strategy is adopted in thisnerated with the intramuscular EMG model proposed
study for the estimation of the discrete parameters;. in [28] and also previously applied for the validation
of the method proposed in [1]. The simulated signals

V. VALIDATION ON EXPERIMENTAL AND SIMULATED  were obtained by an imposed coefficient of ISI variation
SIGNALS of 60%, corresponding to very irregular firings. The

A. Experimental signals other parameters of the model were set as in a previous

. tudy [1], including the level of noise that corresponded
The method proposed can be applied to several sp%ea SNR of10dB). In total, five signals were simulated

sorting applications, such as intraneural or mtramuscuva\}ith the same set of parameters. These signals differed

recordings. The assgmptlons of the model_ mcludeﬂ%m each other because the shape of the action po-
refractory period, which can be set depending on the

o . ~. 2 7 “tentials were varied within the library of shapes of the
application, and the cost associated to the firing irregu- . .
: . : model [28] and because the spike trains were generated
larity. Note that the latter does not imply that irregular . . L
o . o . . _randomly, according to the imposed statistics.
firings cannot be identified but simply that a solution
with very irregular firings is less favored than one with
more regu|ar ﬁringsl C. Performance index
The validation of the method was performed on a The performance index for each spike source was
set of experimental intramuscular EMG signals, whetgefined as [29]:
the spikes represent the activation of spinal motor neu- s . _
rons. These signals were chosen for direct comparison  A(i) = Nois(i) = NFP(Z,) = NewlD)
between the proposed method with the Tabu search Nois(i)
method proposed in [1]. The same experimental signaihere Npis(:) are spike numbers of the unit: detected
as described in [1] were thus used for this study. by EMGLAB for the experimental signals or simulated
Briefly, the experimental signals were recorded frofpy the model for the synthetic signalSgn(:) and Nep(7)
the abductor digiti minimi muscle of five healthy merare respectively the false negatives and the false pasitive
(age, meant SD =25.3 + 4.5 yr) with a pair of wire with respect to the reference (EMGLAB or the model). A
electrodes made of Teflon coated stainless steel (Ad#tected impulse was considered a correct one if within a
Systems, Carlsborg, WA, USA; diamef&um) inserted 1ms-window centered on the instant of reference for the
into the muscle with 25 G needle. The intramuscularsame unit. The global performance of the decomposition
EMG signals were amplified and provided one bipowvas then measured by the following index [29]:
lar recording (Counterpoint EMG, DANTEC Medical, I
Skovlunde, Denmark) that was band-pass filter&@D ( A= EZA(Z')
Hz-5 kHz) and sampled at0 kHz. A reference electrode I~
was placed around the wrist. The decomposition method
was evgluated_on intervalls ap s of signals reC(_)rded which o;/m; > 0.3 were excluded from the analysis,
during isometric contractions al0% of the maximal since the ISI variability of motor unit spike trains is
voluntary contraction (MVC) force. The validation was

performed by comparing the results of the propos u&ually lower than this limit in the experimental condi-
methods with those provided as reference results %ons [30], [31]. Therefore, among the discharge pattemns

" ) ﬁ tained by the application of the proposed method to
manual decomposition of an expert operator using the . . L .
.experimental signals, only those satisfying the condition

EMGLAB tool. The proposed method was applied in .
. : . . oi/m; < 0.3 were selected for analysis and the global
a fully automatic way, without any intervention by the f L h d .
operator performance crlterlor_ﬂ was_t us averaged on f[h@(z)
b ' of the validated units. Thisa-posteriori selection of
) . sources is not necessary in other applications in which
B. Simulated signals the firing instants are less regular. The decomposition
The experimental signals were recorded in conditionasults of simulated firings provide a test of the method in
where the firing patterns were expected to be rathewnditions of very irregular spike firing. The a-posteriori
regular (isometric contractions). In addition to experselection of sources was not applied to the simulated
mental signals, the method was also applied to a signals and results are reported as average over all motor

of simulated signals. This set of simulations was useuhits. Note that the ISI variability of the simulated spike

x 100%

For the experimental signals, discharge patterns for



trains is doubled compared with the upper limit imposeddlly cancelled by overlaps of other action potentials in
to the experimental spike train decomposition. the first segment. Similarly, action potentigll was rel-
atively isolated in the first segment and cancelled in the
second. Despite these complex overlaps, the automatic
method was able to identify all action potentials in the

The constant parameters of the Bayesian modgl, segments correctly. In this example, the reference

(Fig. 2) anc(lo'ghe Markov chain initializations are listed ifyecomposition result was provided by the simulation tool
Tab. IV. (h; "), 6. are results of the preprocessing angdnq is thus exact.

7

we fixedop, = 0.1 max(h) in the tests.

D. Results of decomposition

[2]
TABLE IV 5 i tza ¢ 243 ]
CONSTANT PARAMETERS INFIG. 2 AND MARKOV CHAIN > . - 4,
INITIALIZATION . o 0
= -05
o} -1
. = b e wis en wm on om on_oiw o
mo (o) Q; /B’L A /Bs as bs < ‘ o . N ‘
woms| Bomg” | 1 [ 1|1 [ 1]17]1 N L
m; af s; | x; O’ﬁi h; Oe . .
5 5 o7 T time in seconds
100ms | (30ms)® | 0 | @ | (0.15)% | h; Ge
Fig. 4. lllustration of decomposition result of one segmean-

Fig. 3 shows an example of raw experimental Sigan”ing up to four overlapped action potentials and the Ineiging

d the d iti ft di ¢ t @Eﬁment with three overlapped action potentials. Uppezlsatepre-
an e ecompo_S| lon _0 WO adjacent segments w ent the source numbers identified by the proposed automativod
overlapped potentials using the proposed method. In thisile lower labels those from the simulation tool. The residerror
example, the fully automatic method proposed providéglalso shown in the lower panel.
the same result as that obtained by the reference decom-
position tool used by an expert operator. The decomposition results for the experimental signals
are shown in Tab. V. # Sources and # Val are respectively
the number of sources identified by EMGLAB (reference

il 46 7 3 1° ] results) and the number of validated spike trains accord-

% i 46 7 5 ] ing to thea-posterioricriterion on the regularity. Because
;’ the main challenge in the decomposition is dealing with
§ overlapped action potentials[2], especially when more
2 = o e o o o ok than two action potentials are superimposed, in Tab.V
< 0sf ‘ ‘ ‘ ‘ ‘ ] we also report the percentage of action potentials that

OWWWMWWW“W%W are overlapped with others. Therefore, in Tab. %,

o 048 040 os o8t 052 053 overlapand % overlap> 3 indicates the percentage of
overlapped action potentials (over the total number of
time in seconds action potentials) and the percentage of action potentials

Fig. 3. Example of EMG decomposition of two adjacent segsent SuDerp9§iti0n with at least Oth?r two aCti_On potentials
using the proposed approrach in comparison with the referen(superposition of at least 3 action potentials), respec-
gﬁcomposmon- '“tthes]?ttr‘]"’o Segmentf a total OfchSOUfceagT@s tively. The algorithm runtime complexity was measured
€ numbers on top o € raw signal represen € sourceésiabe - . H . .
identified by the automatic decomposition with the proposethod by comput_a}tlonal time in seconds per Iter_atlon for_the
(top numbers) and the decomposition with interaction of speer d€composition of each second of the experimental signal
operator using EMGLAB (lower numbers). The labelling of sms 2. In order to decompose EMG signals of sufficient
in this e>_<an_‘|ple led to perfect matching \_Nlth the referen(sejlteThe length & 20 s to get reliable statistics) and upon
raw (solid line) and the reconstructed signal (dashed Bme)shown | . tal si Is. the Mark hai
in the upper panel whereas the residual error is plottedenldtver severa ?Xpe”men a S'Q_”a S’_ e Mar OV_ ¢ "_’“n was
panel. systematically run foR00 iterations. The estimation of
the discharge patterns was then obtained by a majority
Fig. 4 shows an example of decomposition of simote on each temporal window (of lengthTr), whose
ulated signals to better represent the ability of thgdvantages are discussed in [20].
method to identify complex superimpositions of action The decomposition accuracy of the proposed method,
potentials. In this example, four overlapping action pas evaluated with the global performance indgxwas
tentials are present in two segments. The shape of actimproved (by approximatel3%) compared to that ob-

potential#4, which is isolated in the second segment, i&ined by the joint maximization by Tabu search [1]
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(see Tab. V). Most importantly, more spike trains weraccording to its conditional law |G, 3,), where
validated with the proposed method than with the Tabu N - 1
search. For all tested methods in Tab. V, the detection @ = s + 5, By =0 + §HZ =) sixh
errors (both false positives and false negatives) occurred i
less often in segments with single action potentials, whigd the mean value decreases|as— Y, s; = h||?
most errors were found in segments with overlaps, decreases.
it was expected. Therefore, the accuracy of the methodTab. VI showsz? from the preprocessing (shown as
on identifying overlapped action potentials was als@ference), after full decomposition with optimization by
computed. Over the entire number of overlapped actidabu search [1] and with the proposed MCMC approach
potentials, the accuracy wa9% and over all action with and without spike magnitude variability. The lower
potentials in superimpositions of at least three actiofalue of residual noise level with the proposed approach
potentials, the accuracy wa$%. Note that by using (Tab. VI) is in agreement with the improvement df
the MCMC method, the decomposition results wouldy the MCMC method and the magnitude variability
not vary for the same signal even if the latter is ananodel that adjusts the energy for each detected spike.
lyzed several times with different initialization valuesThe lower error likely represents a better fit of the model
This convergence property (independent of initializatiow.r.t. the data rather than overfitting the noises since
values) derives directly from the convergence in thbe reduction in residual error is also accompanied by
distribution sense of the MCMC method (see discussistperior accuracy, as shown in Tab. V.
in Section V).
i : TABLE VI

Tab. V also shows the decomposition results obtaineghyparison 0F52 BY OPTIMIZATION WITH TABU SEARCH AND
by the proposed MCMC algorithm with the constardy MCMC oN THE 5 EXPERIMENTAL EMG SIGNALS (10% MVC,
spike magnitude model for each sourds,., without 20 S RECORDINGS.
including the varlablle amplitude model. The same expeir'r ENG # 1 S 2 S
results were used in each case and t#8durce’s row -
preprocessing || 0.0012 | 0.0014 |0.0012 | 0.0019 | 0.0011
reports the number of detected sources. The decomPe=Tzpu search  110.0023 [0.0029 10.0030 10,0034 [ 0.0026
sition performance degraded using this simplified modeMCMC (full model) || 0.0016 | 0.0027 | 0.0024 | 0.0030 | 0.0016
compared to the model with variable magnitudes: theMCMC (s; = 1,) || 0.0018 | 0.0027 | 0.0026 | 0.0033 | 0.0019
latter have achieved better results in both extracting more

valid trains and better accuracy calculated upon thesd-inally, simulated signals with high variability in
valid trains. firing were used to evaluate the proposed decomposition

method. One example of decomposition of simulated

c TABLE V . signals is presented in Fig. 4, as commented above.
OMPARISON OF DECOMPOSITION RESULTS ON TH .

EXPERIMENTAL EMG SIGNALS (10%MVC, 20 S RECORDINGS. The a\{erage qccuracy (Over_ all motor unlts' and over

the 5 signals simulated) obtained for these signals was

2

EMG # 1 2 3 4 5 83 + 5%. The accuracy calculated for overlapped action
# Sources 5 5 8 8 4 potentials in the simulations was + 3%.
% overlap 81 84 91 88 82
% overlap> 3 63 61 74 69 65
MEME on extended model VI. DISCUSSION AND CONCLUSION .
# Val 5 4 6 5 2 We have proposed a novel method for fully automatic
A 91.1%) 90.6%) 90.5%| 89.3%| 94.4%| spike sorting in multiunit recordings. The main difficulty

Computing time (s.)| 13.2 | 149 | 152 | 138 | 150 | iy the problem of spike sorting is the resolution of

MCMC on uniform magnitude model . . . . .
Val 7 7 7 7 5 superimposed spikes. The isolated spikes can indeed

A 87.1% 90.4%| 92.3%] 80.2%] 90.7%| be detected and clustered with robust techniques, that
Optimization using Tabu search [1] have high performance. On the contrary, the global
# Val 3 4 4 4 2 optimization of overlapped action potentials is a non-
A 89.4%] 85.1%]| 87.7%| 87.2%] 92.5%

deterministic polynomial-type (NP) hard problem, and
thus cannot be solved by polynomial complexity algo-
The background noise variance estimatitincan also rithms. Therefore, methods for full spike sorting differ
be considered a good indicator of decomposition qualitpainly for their performance when separating overlapped
since it measures the difference between the obsenaadion potentials. We have previously proposed a method
signal and its reconstruction from the detected discharipe the solution of overlapped spikes in neural or intra-
patterns and the estimated spikes. Indeéds sampled muscular recordings based on a Bayesian model coupled
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with a MAP estimator and the Tabu search technique [H]as not been tested in the current study.
In the present study, we have expanded the signal modeln conclusion, a new fully automatic method for
to allow for a variability in the spike magnitudes in thespike sorting of multiunit recordings has been derived
same source. Moreover, we have proposed a new metlaod compared to a previously proposed solution on
for the solution of the spike sorting problem based cexperimental intramuscular recordings. The method was
MCMC simulation. The convergence property of thiproven to provide good accuracy in signal decomposition
method was proven theoretically (Appendix), whereagth relatively limited computational time even in the
the Tabu search algorithm described in [1] is heuristicase of several spikes overlapped in time.
The performance of this approach is further improved by
including variable magnitudes in the spike model. APPENDIX

The model is based on the assumption of a refractory Proof: To show the irreducibility of the chain in
period in neural firing, which implies to set a minimunTab. 1, it is sufficient to show that for atk € Ci, such
time lapse between two consecutive discharges of teat P(u) > 0, the probability of a particular trajectory
same source. Further, the model also favors regutwmposed ofu® =0,...,u® .. .« = u}, where
firings with respect to irregular firings, but withoutZ = |u|; and |u(® — w(~Y|; =1, is non-zero.
constraining the solution space to regular firings. Accord-Such a chain is constructed by adding a spike of
ingly, the method was tested on simulated signals with certain source in each iteration. It is then sufficient
very large firing variability and proved to be relativelyto show that for alli, K(u(~1 — «®) > 0, or
accurate also in those conditions. As it was expected, éguivalently,
accuracy was lower in case of irregular than for regular 1 ; 1 ;
firings bﬁt the method could still begsuccessfully apglied q(u = u®) p s u®) > 0. (A1)
in a fully automatic way with accuracy greater thait is evident thatu® € w(u~1), and it follows that:
80% for an ISl variability of 60% (simulation results). i1 i i1 i
It has to be noted that the imposed variability in theq(u( 'l ))p(u( 'l ))

simulations was so large that the spike train regularity _ P(u) mi {1 F(U(l_l))}
could not be used as a relevant information for reducing F(uli-D) T F(u®)
the solution space in the automatic method. The model ) p(u(i)) p(u(i))

is also based on the assumption of independence of - mln{F(u(i—l))’ F(u(i))}

the spike trains. We note however that this assumptlcme inequality (A-1) is thus guaranteed by the fact that

is not always met since neural cells often fire morg, ;) = ny
h Iv than b h H . u\") > 0 for all i. Since P(u) > 0 implies that
SYRchironously an by Mere enance. Fowsver, 'ne Sp'a w®) > 0 for all i (u € C, = u € ¢ for all i).

train independence assumption should not be viewed
a limitation of the approach since it does not imply that
dependent spike trains cannot be identified, similarly to REFERENCES
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