A. Fourrier, B. Bégaud, A. Alpérovitch, M. Verdier-taillefer, E. Touzé et al., Hepatitis B vaccine and first episodes of central nervous system demyelinating disorders: a comparison between reported and expected number of cases, British Journal of Clinical Pharmacology, vol.36, issue.5, pp.51489-490, 2001.
DOI : 10.1046/j.1365-2125.2001.01364.x

P. Tubert, B. Bégaud, F. Haramburu, and J. Péré, Spontaneous reporting: how many cases are required to trigger a warning? [see comments], British Journal of Clinical Pharmacology, vol.32, issue.4, pp.407-408, 1991.
DOI : 10.1111/j.1365-2125.1991.tb03922.x

N. Moore, C. Kreft-jais, F. Haramburu, C. Noblet, M. Andrejak et al., Reports of hypoglycaemia associated with the use of ACE inhibitors and other drugs: a case/non-case study in the French pharmacovigilance system database, British Journal of Clinical Pharmacology, vol.44, issue.5, pp.44513-518, 1997.
DOI : 10.1046/j.1365-2125.1997.00615.x

P. Tubert-bitter, B. Bégaud, Y. Moride, A. Chaslerie, and F. Haramburu, Comparing the toxicity of two drugs in the framework of spontaneous reporting: A confidence interval approach, Journal of Clinical Epidemiology, vol.49, issue.1
DOI : 10.1016/0895-4356(95)00537-4

P. Van-der-heijden, E. Van-puijenbroek, S. Van-buuren, and J. Van-der-hofstede, On the assessment of adverse drug reactions from spontaneous reporting systems: the influence of under-reporting on odds ratios, Statistics in Medicine, vol.126, issue.14, pp.2027-2044, 2002.
DOI : 10.1002/sim.1157

A. Bate, M. Lindquist, I. Edwards, S. Olsson, R. Orre et al., A Bayesian neural network method for adverse drug reaction signal generation, European Journal of Clinical Pharmacology, vol.54, issue.4, pp.315-321, 1998.
DOI : 10.1007/s002280050466

W. Dumouchel, Bayesian Data Mining in Large Frequency Tables, with an Application to the FDA Spontaneous Reporting System, The American Statistician, vol.13, issue.3
DOI : 10.2307/1164724

A. Szarfman, S. Machado, O. Neill, and R. , Use of screening algorithms and computer systems to efficiently signal higher-than-expected combinations of drugs and events in the US FDA's spontaneous reports database, Drug Saf, issue.6, pp.25381-392, 2002.

S. Evans, P. Waller, and S. Davis, Use of proportional reporting ratios (PRRs) for signal generation from spontaneous adverse drug reaction reports, Pharmacoepidemiology and Drug Safety, vol.8, issue.6, pp.483-486, 2001.
DOI : 10.1002/pds.677

I. Ahmed, F. Haramburu, A. Fourrier-réglat, F. Thiessard, C. Kreft-jais et al., Bayesian pharmacovigilance signal detection methods revisited in a multiple comparison setting, Statistics in Medicine, vol.23, issue.6, pp.281774-1792, 2009.
DOI : 10.1002/pds.771

I. Ahmed, C. Dalmasso, F. Haramburu, F. Thiessard, and P. Broët, False Discovery Rate Estimation for Frequentist Pharmacovigilance Signal Detection Methods, Biometrics, vol.13, issue.1, pp.301-309, 2010.
DOI : 10.1111/j.1541-0420.2009.01262.x

E. Roux, F. Thiessard, A. Fourrier, and B. Bégaud, Evaluation of statistical association measures for the automatic signal generation in pharmacovigilance, IEEE Transactions on Information Technology in Biomedicine, vol.9, issue.4, pp.518-527, 2005.
DOI : 10.1109/TITB.2005.855566A

URL : https://hal.archives-ouvertes.fr/hal-00396036

I. Ahmed, F. Thiessard, G. Miremont-salamé, and B. Bégaud, Pharmacovigilance Data Mining With Methods Based on False Discovery Rates: A Comparative Simulation Study, Clinical Pharmacology & Therapeutics, vol.57, issue.4, pp.492-498, 2010.
DOI : 10.1016/0895-4356(92)90088-5

A. Bate and S. Evans, Quantitative signal detection using spontaneous ADR reporting, Pharmacoepidemiology and Drug Safety, vol.12, issue.6, pp.427-436, 2009.
DOI : 10.1002/pds.1742

Y. Alvarez, A. Hidalgo, F. Maignen, and J. Slattery, Validation of Statistical Signal Detection Procedures in EudraVigilance Post-Authorization Data, Drug Safety, vol.28, issue.11, pp.475-487, 2010.
DOI : 10.2165/11534410-000000000-00000

A. Hochberg and M. Hauben, Time-to-Signal Comparison for Drug Safety Data-Mining Algorithms vs. Traditional Signaling Criteria, Clinical Pharmacology & Therapeutics, vol.41, issue.6, pp.600-606, 2009.
DOI : 10.1111/j.1365-2125.2004.02203.x

I. Ahmed, F. Thiessard, G. Miremont-salamé, F. Haramburu, C. Kreft-jais et al., Tubert-Bitter P: Early detection of pharmacovigilance signals with automated methods based on false discovery rates: a comparative study, Drug Saf, vol.2012, issue.6, pp.35495-506

F. Maignen, M. Hauben, and P. Tsintis, Modelling the Time to Onset of Adverse Reactions with Parametric Survival Distributions, Drug Safety, vol.28, issue.11, pp.417-434, 2010.
DOI : 10.2165/11532850-000000000-00000

L. Van-holle, Z. Zeinoun, V. Bauchau, and T. Verstraeten, Using time-to-onset for detecting safety signals in spontaneous reports of adverse events following immunization: a proof of concept study, Pharmacoepidemiology and Drug Safety, vol.25, issue.6, pp.603-610
DOI : 10.1002/pds.3226

V. Cornelius, O. Sauzet, and S. Evans, A Signal Detection Method to Detect Adverse Drug Reactions Using a Parametric Time-to-Event Model in Simulated Cohort Data, Drug Safety, vol.16, issue.4, pp.599-610
DOI : 10.2165/11599740-000000000-00000

S. Lagakos, L. Barraj, D. Gruttola, and V. , Nonparametric analysis of truncated survival data, with application to AIDS, Biometrika, vol.75, issue.3, pp.515-523, 1988.
DOI : 10.1093/biomet/75.3.515

J. Kalbfleisch and J. Lawless, Regression models for right truncated data with applications to AIDS incubation times and reporting lags, Stat Sin, vol.1, pp.19-32, 1991.

B. Bégaud, J. Péré, and G. Miremont, Estimation of the denominator in spontaneous reporting, Methodological Approaches in Pharmacoepidemiology: Application to Spontaneous Reporting, pp.51-70, 1993.

R. Development, C. Team, and R. , A Language and Environment for Statistical Computing. R Foundation for Statistical Computing

H. Théophile, T. Schaeverbeke, G. Miremont-salamé, A. Abouelfath, V. Kahn et al., Sources of Information on Lymphoma Associated with Anti-Tumour Necrosis Factor Agents, Drug Safety, vol.72, issue.6, pp.34577-585, 2011.
DOI : 10.2165/11590200-000000000-00000

B. Efron and R. Tibshirani, An Introduction to the Bootstrap, 1993.
DOI : 10.1007/978-1-4899-4541-9

S. Gross and T. Lai, Bootstrap methods for truncated and censored data, Stat Sin, vol.6, pp.509-530, 1996.

J. Weber and J. Griffin, Mathematical models in adverse drug reaction assessment In Iatrogenic Diseases, 1986.

P. Tubert-bitter, F. Haramburu, B. Bégaud, A. Chaslerie, E. Abraham et al., Spontaneous reporting of adverse drug reactions: who reports and what?, Pharmacoepidemiology and Drug Safety, vol.7, issue.5, pp.323-329, 1998.
DOI : 10.1002/(SICI)1099-1557(199809/10)7:5<323::AID-PDS374>3.0.CO;2-8

F. Haramburu, B. Bégaud, and Y. Moride, Temporal trends in spontaneous reporting of unlabelled adverse drug reactions, British Journal of Clinical Pharmacology, vol.44, issue.3, pp.299-301, 1997.
DOI : 10.1046/j.1365-2125.1997.t01-1-00573.x

Y. Moride, F. Haramburu, A. Requejo, and B. Bégaud, Under-reporting of adverse drug reactions in general practice, British Journal of Clinical Pharmacology, vol.43, issue.2, pp.177-181, 1997.
DOI : 10.1046/j.1365-2125.1997.05417.x

B. Bégaud, K. Martin, F. Haramburu, and N. Moore, Rates of Spontaneous Reporting of Adverse Drug Reactions in France, JAMA: The Journal of the American Medical Association, vol.288, issue.13, pp.1588-1588, 2002.
DOI : 10.1001/jama.288.13.1588

P. Tubert, B. Bégaud, J. Péré, F. Haramburu, and J. Lellouch, Power and weakness of spontaneous reporting: A probabilistic approach, Journal of Clinical Epidemiology, vol.45, issue.3
DOI : 10.1016/0895-4356(92)90088-5

J. Kalbfleisch and J. Lawless, Inference Based on Retrospective Ascertainment: An Analysis of the Data on Transfusion-Related AIDS, Journal of the American Statistical Association, vol.7, issue.406, pp.360-372, 1989.
DOI : 10.1046/j.1537-2995.1987.27587320525.x

T. Colton, Biased Sampling of Cohorts in Epidemiology, In Encyclopedia of Biostatistics, vol.1, pp.338-350, 1998.

J. Lawless, Statistical Models and Methods for Lifetime Data New Jersey: Wiley; 2003. 37. Keiding N: Nonparametric estimation under truncation, In Encyclopedia of Statistical Sciences, vol.14, pp.8775-8777, 2006.

Ü. Gürler, Bivariate estimation with right-truncated data, JAmStat Assoc, issue.435, pp.911152-1165, 1996.

S. Gross and C. Huber-carol, Regression models for truncated survival data, Scandinavian J Stat, pp.193-213, 1992.

. Leroy, Estimating time-to-onset of adverse drug reactions from spontaneous reporting databases, BMC Medical Research Methodology, vol.91, issue.435, p.17, 2014.
DOI : 10.1080/01621459.1989.10478780

URL : https://hal.archives-ouvertes.fr/inserm-00946044