L. Buee, T. Bussiere, V. Buee-scherrer, A. Delacourte, and P. Hof, Tau protein isoforms, phosphorylation and role in neurodegenerative disorders11These authors contributed equally to this work., Brain Research Reviews, vol.33, issue.1, pp.95-130, 2000.
DOI : 10.1016/S0165-0173(00)00019-9

C. Duyckaerts, M. Potier, and B. Delatour, Alzheimer disease models and human neuropathology: similarities and differences, Acta Neuropathologica, vol.204, issue.1, pp.5-38, 2008.
DOI : 10.1007/s00401-007-0312-8

URL : https://hal.archives-ouvertes.fr/hal-00320572

J. Gotz and L. Ittner, Animal models of Alzheimer's disease and frontotemporal dementia, Nature Reviews Neuroscience, vol.12, issue.7, pp.532-544, 2008.
DOI : 10.1038/nrn2420

E. Chang, S. Kim, H. Yin, H. Nagaraja, and J. Kuret, Pathogenic missense MAPT mutations differentially modulate tau aggregation propensity at nucleation and extension steps, J Neurochem, vol.107, pp.1113-1123, 2008.
DOI : 10.1111/j.1471-4159.2008.05692.x

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2596975

M. Chaunu, V. Deramecourt, V. Buée-scherrer, L. Ber, I. Brice et al., Juvenile frontotemporal dementia with parkinsonism associated with Tau mutation G389R, J Alzheimer, vol.2013, issue.37, pp.769-776

H. Braak and E. Braak, Neuropathological stageing of Alzheimer-related changes, Acta Neuropathologica, vol.80, issue.4, pp.239-259, 1991.
DOI : 10.1007/BF00308809

A. Delacourte, J. David, N. Sergeant, L. Buee, A. Wattez et al., The biochemical pathway of neurofibrillary degeneration in aging and Alzheimer's disease, Neurology, vol.52, issue.6, pp.1158-1165, 1999.
DOI : 10.1212/WNL.52.6.1158

C. Duyckaerts, M. Bennecib, Y. Grignon, T. Uchihara, Y. He et al., Modeling the Relation Between Neurofibrillary Tangles and Intellectual Status, Neurobiology of Aging, vol.18, issue.3, pp.267-273, 1997.
DOI : 10.1016/S0197-4580(97)80306-5

M. Verny, C. Duyckaerts, Y. Agid, and J. Hauw, The significance of cortical pathology in progressive supranuclear palsy: Clinico-pathological data in 10 cases, Brain, vol.119, issue.4, pp.1123-1136, 1996.
DOI : 10.1093/brain/119.4.1123

Y. Saito, N. Ruberu, M. Sawabe, T. Arai, N. Tanaka et al., Staging of Argyrophilic Grains: An Age-Associated Tauopathy, Journal of Neuropathology & Experimental Neurology, vol.63, issue.9, pp.911-918, 2004.
DOI : 10.1093/jnen/63.9.911

F. Clavaguera, H. Akatsu, G. Fraser, R. Crowther, S. Frank et al., Brain homogenates from human tauopathies induce tau inclusions in mouse brain, Proceedings of the National Academy of Sciences, vol.110, issue.23, pp.9535-9540
DOI : 10.1073/pnas.1301175110

F. Clavaguera, T. Bolmont, R. Crowther, D. Abramowski, S. Frank et al., Transmission and spreading of tauopathy in transgenic mouse brain, Nature Cell Biology, vol.8, issue.7, pp.909-913, 2009.
DOI : 10.1038/ncb1901

M. Iba, J. Guo, J. Mcbride, B. Zhang, J. Trojanowski et al., Synthetic Tau Fibrils Mediate Transmission of Neurofibrillary Tangles in a Transgenic Mouse Model of Alzheimer's-Like Tauopathy, Journal of Neuroscience, vol.33, issue.3, pp.1024-1037, 2013.
DOI : 10.1523/JNEUROSCI.2642-12.2013

C. Lasagna-reeves, D. Castillo-carranza, U. Sengupta, J. Sarmiento, J. Troncoso et al., Identification of oligomers at early stages of tau aggregation in Alzheimer's disease, The FASEB Journal, vol.26, issue.5, pp.1946-1959, 2012.
DOI : 10.1096/fj.11-199851

B. Frost, R. Jacks, and M. Diamond, Propagation of Tau Misfolding from the Outside to the Inside of a Cell, Journal of Biological Chemistry, vol.284, issue.19, pp.12845-12852, 2009.
DOI : 10.1074/jbc.M808759200

J. Guo and V. Lee, Seeding of Normal Tau by Pathological Tau Conformers Drives Pathogenesis of Alzheimer-like Tangles, Journal of Biological Chemistry, vol.286, issue.17, pp.15317-15331, 2011.
DOI : 10.1074/jbc.M110.209296

I. Santa-maria, M. Varghese, H. Ksiezak-reding, A. Dzhun, J. Wang et al., Paired Helical Filaments from Alzheimer Disease Brain Induce Intracellular Accumulation of Tau Protein in Aggresomes, Journal of Biological Chemistry, vol.287, issue.24, pp.20522-20533, 2012.
DOI : 10.1074/jbc.M111.323279

N. Kfoury, B. Holmes, H. Jiang, D. Holtzman, and M. Diamond, Trans-cellular Propagation of Tau Aggregation by Fibrillar Species, Journal of Biological Chemistry, vol.287, issue.23, pp.19440-19451, 2012.
DOI : 10.1074/jbc.M112.346072

J. Guo and V. Lee, Neurofibrillary tangle-like tau pathology induced by synthetic tau fibrils in primary neurons over-expressing mutant tau, FEBS Letters, vol.50, issue.6, pp.717-723, 2013.
DOI : 10.1016/j.febslet.2013.01.051

A. De-calignon, M. Polydoro, M. Suarez-calvet, C. William, D. Adamowicz et al., Propagation of Tau Pathology in a Model of Early Alzheimer's Disease, Neuron, vol.73, issue.4, pp.685-697, 2012.
DOI : 10.1016/j.neuron.2011.11.033

L. Liu, V. Drouet, J. Wu, M. Witter, S. Small et al., Trans-Synaptic Spread of Tau Pathology In Vivo, PLoS ONE, vol.25, issue.2, p.31302, 2012.
DOI : 10.1371/journal.pone.0031302.g008

. Caillierezr, . Begards, . Lecollek, . Deramecourtv, . Zommern et al., Lentiviral Delivery of the Human Wild-type Tau Protein Mediates a Slow and Progressive Neurodegenerative Tau Pathology in the Rat Brain, Molecular Therapy, vol.21, issue.7, pp.1358-1368, 2013.
DOI : 10.1038/mt.2013.66

N. Sergeant, B. Sablonniere, S. Schraen-maschke, A. Ghestem, C. Maurage et al., Dysregulation of human brain microtubule-associated tau mRNA maturation in myotonic dystrophy type 1, Human Molecular Genetics, vol.10, issue.19, pp.2143-2155, 2001.
DOI : 10.1093/hmg/10.19.2143

A. Hottinger, M. Azzouz, N. Deglon, P. Aebischer, and A. Zurn, Complete and long-term rescue of lesioned adult motoneurons by lentiviral-mediated expression of glial cell line-derived neurotrophic factor in the facial nucleus, J Neurosci, vol.20, pp.5587-5593, 2000.

E. Lobbestael, V. Reumers, A. Ibrahimi, K. Paesen, I. Thiry et al., Immunohistochemical detection of transgene expression in the brain using small epitope tags, BMC Biotechnology, vol.10, issue.1, p.16, 2010.
DOI : 10.1186/1472-6750-10-16

M. Galas, P. Dourlen, S. Begard, K. Ando, D. Blum et al., The Peptidylprolyl cis/trans-Isomerase Pin1 Modulates Stress-induced Dephosphorylation of Tau in Neurons: IMPLICATION IN A PATHOLOGICAL MECHANISM RELATED TO ALZHEIMER DISEASE, Journal of Biological Chemistry, vol.281, issue.28, pp.19296-19304, 2006.
DOI : 10.1074/jbc.M601849200

W. Liu, J. Goodhouse, N. Jeon, and L. Enquist, A Microfluidic Chamber for Analysis of Neuron-to-Cell Spread and Axonal Transport of an Alpha-Herpesvirus, PLoS ONE, vol.102, issue.6, p.2382, 2008.
DOI : 10.1371/journal.pone.0002382.s002

A. Taylor, M. Blurton-jones, S. Rhee, D. Cribbs, C. Cotman et al., A microfluidic culture platform for CNS axonal injury, regeneration and transport, Nature Methods, vol.20, issue.8, pp.599-605, 2005.
DOI : 10.1038/nmeth777

E. Freundt, N. Maynard, E. Clancy, S. Roy, L. Bousset et al., Neuron-to-neuron transmission of ??-synuclein fibrils through axonal transport, Annals of Neurology, vol.69, issue.4, pp.517-524, 2012.
DOI : 10.1002/ana.23747

URL : https://hal.archives-ouvertes.fr/hal-01183063

J. Wu, M. Herman, L. Liu, S. Simoes, C. Acker et al., Small Misfolded Tau Species Are Internalized via Bulk Endocytosis and Anterogradely and Retrogradely Transported in Neurons, Journal of Biological Chemistry, vol.288, issue.3, pp.1856-1870, 2013.
DOI : 10.1074/jbc.M112.394528

URL : https://hal.archives-ouvertes.fr/pasteur-00874385

N. Arhel, A. Genovesio, K. Kim, S. Miko, E. Perret et al., Quantitative four-dimensional tracking of cytoplasmic and nuclear HIV-1 complexes, Nature Methods, vol.272, issue.10, pp.817-824, 2006.
DOI : 10.1038/nmeth928

URL : https://hal.archives-ouvertes.fr/pasteur-00163778

N. Arhel, S. Souquere-besse, S. Munier, P. Souque, S. Guadagnini et al., HIV-1 DNA Flap formation promotes uncoating of the pre-integration complex at the nuclear pore, The EMBO Journal, vol.9, issue.12, pp.3025-3037, 2007.
DOI : 10.1038/sj.emboj.7601740

URL : https://hal.archives-ouvertes.fr/hal-00167661

L. Cenquizca and L. Swanson, Spatial organization of direct hippocampal field CA1 axonal projections to the rest of the cerebral cortex, Brain Research Reviews, vol.56, issue.1, pp.1-26, 2007.
DOI : 10.1016/j.brainresrev.2007.05.002

A. Reiner, C. Veenman, L. Medina, Y. Jiao, D. Mar et al., Pathway tracing using biotinylated dextran amines, Journal of Neuroscience Methods, vol.103, issue.1, pp.23-37, 2000.
DOI : 10.1016/S0165-0270(00)00293-4

M. Mercken, M. Vandermeeren, U. Lubke, J. Six, J. Boons et al., Monoclonal antibodies with selective specificity for Alzheimer Tau are directed against phosphatase-sensitive epitopes, Acta Neuropathologica, vol.84, issue.3, pp.265-272, 1992.
DOI : 10.1007/BF00227819

S. Jeganathan, A. Hascher, S. Chinnathambi, J. Biernat, E. Mandelkow et al., Proline-directed Pseudo-phosphorylation at AT8 and PHF1 Epitopes Induces a Compaction of the Paperclip Folding of Tau and Generates a Pathological (MC-1) Conformation, Journal of Biological Chemistry, vol.283, issue.46, pp.32066-32076, 2008.
DOI : 10.1074/jbc.M805300200

G. Jicha, R. Bowser, I. Kazam, and P. Davies, Alz-50 and MC-1, a new monoclonal antibody raised to paired helical filaments, recognize conformational epitopes on recombinant tau, Journal of Neuroscience Research, vol.85, issue.2, pp.128-132, 1997.
DOI : 10.1002/(SICI)1097-4547(19970415)48:2<128::AID-JNR5>3.0.CO;2-E

B. Allen, E. Ingram, M. Takao, M. Smith, R. Jakes et al., Abundant tau filaments and nonapoptotic neurodegeneration in transgenic mice expressing human P301S tau protein, pp.9340-9351, 2002.

N. Mohamed, T. Herrou, V. Plouffe, N. Piperno, and N. Leclerc, Spreading of tau pathology in Alzheimer's disease by cell-to-cell transmission, European Journal of Neuroscience, vol.277, issue.Suppl 2
DOI : 10.1111/ejn.12229

A. Gomez-ramos, M. Diaz-hernandez, A. Rubio, M. Miras-portugal, and J. Avila, Extracellular tau promotes intracellular calcium increase through M1 and M3 muscarinic receptors in neuronal cells, Molecular and Cellular Neuroscience, vol.37, issue.4, pp.673-681, 2008.
DOI : 10.1016/j.mcn.2007.12.010

C. Karch, A. Jeng, and A. Goate, Extracellular Tau Levels Are Influenced by Variability in Tau That Is Associated with Tauopathies, Journal of Biological Chemistry, vol.287, issue.51, pp.42751-42762, 2012.
DOI : 10.1074/jbc.M112.380642

X. Chai, J. Dage, and M. Citron, Constitutive secretion of tau protein by an unconventional mechanism, Neurobiology of Disease, vol.48, issue.3, pp.356-366, 2012.
DOI : 10.1016/j.nbd.2012.05.021

V. Plouffe, N. Mohamed, J. Rivest-mcgraw, J. Bertrand, M. Lauzon et al., Hyperphosphorylation and Cleavage at D421 Enhance Tau Secretion, PLoS ONE, vol.168, issue.5, p.36873, 2012.
DOI : 10.1371/journal.pone.0036873.t001

URL : http://doi.org/10.1371/journal.pone.0036873

A. Pooler, E. Phillips, D. Lau, W. Noble, and D. Hanger, Physiological release of endogenous tau is stimulated by neuronal activity, EMBO reports, vol.309, issue.4, pp.389-394, 2013.
DOI : 10.1016/j.nbd.2011.01.029

B. Holmes, S. Devos, N. Kfoury, M. Li, R. Jacks et al., Heparan sulfate proteoglycans mediate internalization and propagation of specific proteopathic seeds, Proceedings of the National Academy of Sciences, vol.110, issue.33, pp.3138-3147
DOI : 10.1073/pnas.1301440110

D. Simon, E. Garcia-garcia, F. Royo, J. Falcon-perez, and J. Avila, Proteostasis of tau. Tau overexpression results in its secretion via membrane vesicles, FEBS Letters, vol.32, issue.1, pp.47-54, 2012.
DOI : 10.1016/j.febslet.2011.11.022

M. Yasuda and M. Mayford, CaMKII Activation in the Entorhinal Cortex Disrupts Previously Encoded Spatial Memory, Neuron, vol.50, issue.2, pp.309-318, 2006.
DOI : 10.1016/j.neuron.2006.03.035

F. Clavaguera, I. Lavenir, B. Falcon, S. Frank, M. Goedert et al., ???Prion-Like??? Templated Misfolding in Tauopathies, Brain Pathology, vol.8, issue.3, pp.342-349, 2013.
DOI : 10.1111/bpa.12044

M. Diaz-hernandez, A. Gomez-ramos, A. Rubio, R. Gomez-villafuertes, J. Naranjo et al., Tissue-nonspecific Alkaline Phosphatase Promotes the Neurotoxicity Effect of Extracellular Tau, Journal of Biological Chemistry, vol.285, issue.42, pp.32539-32548, 2010.
DOI : 10.1074/jbc.M110.145003

J. Gerson and R. Kayed, Formation and Propagation of Tau Oligomeric Seeds, Frontiers in Neurology, vol.4, p.93, 2013.
DOI : 10.3389/fneur.2013.00093

L. Troquier, R. Caillierez, S. Burnouf, F. Fernandez-gomez, M. Grosjean et al., Targeting Phospho-Ser422 by Active Tau Immunotherapy in the THYTau22 Mouse Model: A Suitable Therapeutic Approach, Current Alzheimer Research, vol.9, issue.4, pp.397-405
DOI : 10.2174/156720512800492503

URL : https://hal.archives-ouvertes.fr/inserm-00664452

K. Yanamandra, N. Kfoury, H. Jiang, T. Mahan, S. Ma et al., Anti-Tau Antibodies that Block Tau Aggregate Seeding In??Vitro Markedly Decrease Pathology and Improve Cognition In??Vivo, Neuron, vol.80, issue.2, pp.402-414, 2013.
DOI : 10.1016/j.neuron.2013.07.046