C. Duyckaerts, B. Delatour, and M. Potier, Classification and basic pathology of Alzheimer disease, Acta Neuropathologica, vol.14, issue.2, pp.5-36, 2009.
DOI : 10.1007/s00401-009-0532-1

P. Nelson, I. Alafuzoff, and E. Bigio, Correlation of Alzheimer Disease Neuropathologic Changes With Cognitive Status: A Review of the Literature, Journal of Neuropathology & Experimental Neurology, vol.71, issue.5, pp.362-381, 2012.
DOI : 10.1097/NEN.0b013e31825018f7

H. Braak, I. Alafuzoff, T. Arzberger, H. Kretzschmar, D. Tredici et al., Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry, Acta Neuropathologica, vol.12, issue.Suppl 4, pp.389-404, 2006.
DOI : 10.1007/s00401-006-0127-z

H. Braak and E. Braak, Neuropathological stageing of Alzheimer-related changes, Acta Neuropathologica, vol.80, issue.4, pp.239-259, 1991.
DOI : 10.1007/BF00308809

D. Thal, U. Rub, M. Orantes, and H. Braak, Phases of A??-deposition in the human brain and its relevance for the development of AD, Neurology, vol.58, issue.12, pp.1791-1800, 2002.
DOI : 10.1212/WNL.58.12.1791

A. Farooqui, L. Horrocks, and T. Farooqui, Interactions between neural membrane glycerophospholipid and sphingolipid mediators: A recipe for neural cell survival or suicide, Journal of Neuroscience Research, vol.33, issue.9, pp.1834-1850, 2007.
DOI : 10.1002/jnr.21268

T. Hartmann, J. Kuchenbecker, and M. Grimm, Alzheimer???s disease: the lipid connection, Journal of Neurochemistry, vol.1, issue.s1, pp.159-170, 2007.
DOI : 10.1038/sj.mp.4001509

C. Marquer, V. Devauges, and J. Cossec, Local cholesterol increase triggers amyloid precursor protein-Bace1 clustering in lipid rafts and rapid endocytosis, The FASEB Journal, vol.25, issue.4, pp.1295-1305, 2011.
DOI : 10.1096/fj.10-168633

B. Yankner, T. Lu, and P. Loerch, The Aging Brain, Annual Review of Pathology: Mechanisms of Disease, vol.3, issue.1, pp.41-66, 2008.
DOI : 10.1146/annurev.pathmechdis.2.010506.092044

Y. Hannun and L. Obeid, Principles of bioactive lipid signalling: lessons from sphingolipids, Nature Reviews Molecular Cell Biology, vol.449, issue.2, pp.139-150, 2008.
DOI : 10.1038/nrm2329

S. Spiegel and S. Milstien, Sphingosine-1-phosphate: an enigmatic signalling lipid, Nature Reviews Molecular Cell Biology, vol.4, issue.5, pp.397-407, 2003.
DOI : 10.1038/nrm1103

O. Cuvillier, Sphingosine in apoptosis signaling, Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, vol.1585, issue.2-3, pp.153-162, 2002.
DOI : 10.1016/S1388-1981(02)00336-0

S. Pitson, Regulation of sphingosine kinase and sphingolipid signaling, Trends in Biochemical Sciences, vol.36, issue.2, pp.97-107, 2011.
DOI : 10.1016/j.tibs.2010.08.001

S. Spiegel, O. Cuvillier, and L. Edsall, Sphingosine-1-Phosphate in Cell Growth and Cell Deatha, Annals of the New York Academy of Sciences, vol.86, issue.1 SPHINGOLIPIDS, pp.11-18, 1998.
DOI : 10.1073/pnas.95.1.150

O. Cuvillier, G. Pirianov, and B. Kleuser, Suppression of ceramide-mediated programmed cell death by sphingosine-1-phosphate, Nature, vol.381, issue.6585, pp.800-803, 1996.
DOI : 10.1038/381800a0

H. Rosen, P. Gonzalez-cabrera, M. Sanna, and S. Brown, Sphingosine 1-Phosphate Receptor Signaling, Annual Review of Biochemistry, vol.78, issue.1, pp.743-768, 2009.
DOI : 10.1146/annurev.biochem.78.072407.103733

S. Alvarez, K. Harikumar, and N. Hait, Sphingosine-1-phosphate is a missing cofactor for the E3 ubiquitin ligase TRAF2, Nature, vol.20, issue.7301, pp.1084-1088, 2010.
DOI : 10.1038/nature09128

N. Hait, J. Allegood, and M. Maceyka, Regulation of Histone Acetylation in the Nucleus by Sphingosine-1-Phosphate, Science, vol.325, issue.5945, pp.1254-1257, 2009.
DOI : 10.1126/science.1176709

O. Cuvillier, Downregulating sphingosine kinase-1 for cancer therapy, Expert Opinion on Therapeutic Targets, vol.70, issue.8, pp.1009-1020, 2008.
DOI : 10.1124/jpet.106.101345

A. Aguilar and J. Saba, Truth and consequences of sphingosine-1-phosphate lyase, Advances in Biological Regulation, vol.52, issue.1, pp.17-30, 2012.
DOI : 10.1016/j.advenzreg.2011.09.015

L. Brizuela, I. Ader, C. Mazerolles, M. Bocquet, B. Malavaud et al., First Evidence of Sphingosine 1-Phosphate Lyase Protein Expression and Activity Downregulation in Human Neoplasm: Implication for Resistance to Therapeutics in Prostate Cancer, Molecular Cancer Therapeutics, vol.11, issue.9, pp.1841-1851, 2012.
DOI : 10.1158/1535-7163.MCT-12-0227

X. He, Y. Huang, B. Li, C. Gong, and E. Schuchman, Deregulation of sphingolipid metabolism in Alzheimer's disease, Neurobiology of Aging, vol.31, issue.3, pp.398-408, 2010.
DOI : 10.1016/j.neurobiolaging.2008.05.010

E. Rivera, A. Goldin, N. Fulmer, R. Tavares, J. Wands et al., Insulin and insulin-like growth factor expression and function deteriorate with progression of Alzheimer's disease: Link to brain reductions in acetylcholine, Journal of Alzheimer's Disease, vol.8, issue.3, pp.247-268, 2005.
DOI : 10.3233/JAD-2005-8304

M. Mielke and C. Lyketsos, Alterations of the Sphingolipid Pathway in Alzheimer???s Disease: New Biomarkers and Treatment Targets?, NeuroMolecular Medicine, vol.1768, issue.3, pp.331-340, 2010.
DOI : 10.1007/s12017-010-8121-y

V. Bandaru, J. Troncoso, and W. Det, ApoE4 disrupts sterol and sphingolipid metabolism in Alzheimer's but not normal brain, Neurobiology of Aging, vol.30, issue.4, pp.591-599, 2009.
DOI : 10.1016/j.neurobiolaging.2007.07.024

R. Cutler, J. Kelly, and K. Storie, Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer's disease, Proceedings of the National Academy of Sciences, vol.101, issue.7, pp.2070-2075, 2004.
DOI : 10.1073/pnas.0305799101

X. Han, M. D. Mckeel, D. Jr, J. Kelley, and J. Morris, Substantial sulfatide deficiency and ceramide elevation in very early Alzheimer's disease: potential role in disease pathogenesis, Journal of Neurochemistry, vol.273, issue.4, pp.809-818, 2002.
DOI : 10.1046/j.1471-4159.2002.00997.x

P. Katsel, C. Li, and V. Haroutunian, Gene Expression Alterations in the Sphingolipid Metabolism Pathways during Progression of Dementia and Alzheimer???s Disease: A Shift Toward Ceramide Accumulation at the Earliest Recognizable Stages of Alzheimer???s Disease?, Neurochemical Research, vol.270, issue.5240, pp.845-856, 2007.
DOI : 10.1007/s11064-007-9297-x

J. Pettegrew, K. Panchalingam, R. Hamilton, and R. Mcclure, Brain membrane phospholipid alterations in Alzheimer's disease, Neurochemical Research, vol.26, issue.7, pp.771-782, 2001.
DOI : 10.1023/A:1011603916962

H. Satoi, H. Tomimoto, and R. Ohtani, Astroglial expression of ceramide in Alzheimer's disease brains: A role during neuronal apoptosis, Neuroscience, vol.130, issue.3, pp.657-666, 2005.
DOI : 10.1016/j.neuroscience.2004.08.056

M. Mielke, V. Bandaru, N. Haughey, P. Rabins, C. Lyketsos et al., Serum sphingomyelins and ceramides are early predictors of memory impairment, Neurobiology of Aging, vol.31, issue.1, pp.17-24, 2010.
DOI : 10.1016/j.neurobiolaging.2008.03.011

M. Mielke, N. Haughey, and V. Bandaru, Plasma ceramides are altered in mild cognitive impairment and predict cognitive decline and hippocampal volume loss, Alzheimer's & Dementia, vol.6, issue.5, pp.378-385, 2010.
DOI : 10.1016/j.jalz.2010.03.014

A. Gomez-brouchet, D. Pchejetski, and B. Let, Critical Role for Sphingosine Kinase-1 in Regulating Survival of Neuroblastoma Cells Exposed to Amyloid-beta Peptide, Molecular Pharmacology, vol.72, issue.2, pp.341-349, 2007.
DOI : 10.1124/mol.106.033738

J. Lee, J. Xu, and J. Lee, Amyloid-?? peptide induces oligodendrocyte death by activating the neutral sphingomyelinase???ceramide pathway, The Journal of Cell Biology, vol.21, issue.1, pp.123-131, 2004.
DOI : 10.1073/pnas.96.7.4089

L. Puglielli, B. Ellis, A. Saunders, and D. Kovacs, Ceramide Stabilizes ??-Site Amyloid Precursor Protein-cleaving Enzyme 1 and Promotes Amyloid ??-Peptide Biogenesis, Journal of Biological Chemistry, vol.278, issue.22, pp.19777-19783, 2003.
DOI : 10.1074/jbc.M300466200

L. Edsall, O. Cuvillier, S. Twitty, S. Spiegel, and S. Milstien, Sphingosine kinase expression regulates apoptosis and caspase activation in PC12 cells, Journal of Neurochemistry, vol.330, issue.5, pp.1573-1584, 2001.
DOI : 10.1046/j.1471-4159.2001.00164.x

E. Carro and I. Torres-aleman, The role of insulin and insulin-like growth factor I in the molecular and cellular mechanisms underlying the pathology of Alzheimer's disease, European Journal of Pharmacology, vol.490, issue.1-3, pp.127-133, 2004.
DOI : 10.1016/j.ejphar.2004.02.050

K. Flanders, R. Ren, and C. Lippa, TRANSFORMING GROWTH FACTOR-??S IN NEURODEGENERATIVE DISEASE, Progress in Neurobiology, vol.54, issue.1, pp.71-85, 1998.
DOI : 10.1016/S0301-0082(97)00066-X

I. Tesseur, K. Zou, and L. Esposito, Deficiency in neuronal TGF-beta signaling promotes neurodegeneration and Alzheimer's pathology

F. Hemmati, L. Dargahi, and S. Nasoohi, Neurorestorative effect of FTY720 in a rat model of Alzheimer's disease: Comparison with Memantine, Behavioural Brain Research, vol.252, pp.415-421, 2013.
DOI : 10.1016/j.bbr.2013.06.016

T. Montine, C. Phelps, and T. Beach, National Institute on Aging???Alzheimer???s Association guidelines for the neuropathologic assessment of Alzheimer???s disease: a practical approach, Acta Neuropathologica, vol.8, issue.1, pp.1-11, 2012.
DOI : 10.1007/s00401-011-0910-3

S. Pitson, P. Moretti, and J. Zebol, Activation of sphingosine kinase 1 by ERK1/2-mediated phosphorylation, The EMBO Journal, vol.22, issue.20, pp.5491-5500, 2003.
DOI : 10.1093/emboj/cdg540

C. Duyckaerts, J. Hauw, and F. Bastenaire, Laminar distribution of neocortical senile plaques in senile dementia of the alzheimer type, Acta Neuropathologica, vol.24, issue.3-4, pp.249-256, 1986.
DOI : 10.1007/BF00686079

Y. Tu and M. Gilthorpe, Revisiting the relation between change and initial value: a review and evaluation, Statistics in Medicine, vol.16, issue.2, pp.443-457, 2007.
DOI : 10.1002/sim.2538

M. Musicco, F. Adorni, D. Santo, and S. , Inverse occurrence of cancer and Alzheimer disease: A population-based incidence study, Neurology, vol.81, issue.4, pp.322-328, 2013.
DOI : 10.1212/WNL.0b013e31829c5ec1

C. Malaplate-armand, S. Florent-bechard, and I. Youssef, Soluble oligomers of amyloid-?? peptide induce neuronal apoptosis by activating a cPLA2-dependent sphingomyelinase-ceramide pathway, Neurobiology of Disease, vol.23, issue.1, pp.178-189, 2006.
DOI : 10.1016/j.nbd.2006.02.010

N. Takasugi, T. Sasaki, and K. Suzuki, BACE1 Activity Is Modulated by Cell-Associated Sphingosine-1-Phosphate, Journal of Neuroscience, vol.31, issue.18, pp.6850-6857, 2011.
DOI : 10.1523/JNEUROSCI.6467-10.2011

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4534000

T. Gomez-isla, J. Price, D. Mckeel, . Jr, J. Morris et al., Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer's disease, J Neurosci, vol.16, pp.4491-4500, 1996.

S. Colie, P. Codogno, and T. Levade, Regulation of cell death by sphingosine 1-phosphate lyase, Autophagy, vol.6, issue.3, pp.426-427, 2010.
DOI : 10.4161/auto.6.3.11529

URL : https://hal.archives-ouvertes.fr/inserm-00613705

A. Morgan, D. Turic, and L. Jehu, Association studies of 23 positional/functional candidate genes on chromosome 10 in late-onset Alzheimer's disease, American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, vol.5, issue.6, pp.762-770, 2007.
DOI : 10.1002/ajmg.b.30509

A. Kumar, H. Byun, R. Bittman, and J. Saba, The sphingolipid degradation product trans-2-hexadecenal induces cytoskeletal reorganization and apoptosis in a JNK-dependent manner, Cellular Signalling, vol.23, issue.7, pp.1144-1152, 2011.
DOI : 10.1016/j.cellsig.2011.02.009

S. Alvarez, S. Milstien, and S. Spiegel, Autocrine and paracrine roles of sphingosine-1-phosphate, Trends in Endocrinology & Metabolism, vol.18, issue.8, pp.300-307, 2007.
DOI : 10.1016/j.tem.2007.07.005

E. Carro, J. Trejo, and A. Gerber, Therapeutic actions of insulin-like growth factor I on APP/PS2 mice with severe brain amyloidosis, Neurobiology of Aging, vol.27, issue.9, pp.1250-1257, 2006.
DOI : 10.1016/j.neurobiolaging.2005.06.015

E. Carro, J. Trejo, C. Spuch, D. Bohl, and J. Heard, Blockade of the insulin-like growth factor I receptor in the choroid plexus originates Alzheimer's-like neuropathology in rodents: New cues into the human disease?, Neurobiology of Aging, vol.27, issue.11, pp.1618-1631, 2006.
DOI : 10.1016/j.neurobiolaging.2005.09.039

W. Zhao, P. Lacor, and H. Chen, Insulin Receptor Dysfunction Impairs Cellular Clearance of Neurotoxic Oligomeric A??, Journal of Biological Chemistry, vol.284, issue.28, pp.18742-18753, 2009.
DOI : 10.1074/jbc.M109.011015

V. Brinkmann, Sphingosine 1-phosphate receptors in health and disease: Mechanistic insights from gene deletion studies and reverse pharmacology, Pharmacology & Therapeutics, vol.115, issue.1, pp.84-105, 2007.
DOI : 10.1016/j.pharmthera.2007.04.006