Fold change rank ordering statistics: a new method for detecting differentially expressed genes.

Abstract : BACKGROUND: Different methods have been proposed for analyzing differentially expressed (DE) genes in microarray data. Methods based on statistical tests that incorporate expression level variability are used more commonly than those based on fold change (FC). However, FC based results are more reproducible and biologically relevant. RESULTS: We propose a new method based on fold change rank ordering statistics (FCROS). We exploit the variation in calculated FC levels using combinatorial pairs of biological conditions in the datasets. A statistic is associated with the ranks of the FC values for each gene, and the resulting probability is used to identify the DE genes within an error level. The FCROS method is deterministic, requires a low computational runtime and also solves the problem of multiple tests which usually arises with microarray datasets. CONCLUSION: We compared the performance of FCROS with those of other methods using synthetic and real microarray datasets. We found that FCROS is well suited for DE gene identification from noisy datasets when compared with existing FC based methods.
Liste complète des métadonnées

http://www.hal.inserm.fr/inserm-00935627
Contributeur : Ed. Bmc <>
Soumis le : jeudi 23 janvier 2014 - 17:23:23
Dernière modification le : jeudi 15 mars 2018 - 01:33:34
Document(s) archivé(s) le : jeudi 24 avril 2014 - 12:21:30

Identifiants

Collections

Citation

Doulaye Dembélé, Philippe Kastner. Fold change rank ordering statistics: a new method for detecting differentially expressed genes.. BMC Bioinformatics, BioMed Central, 2014, 15 (1), pp.14. 〈10.1186/1471-2105-15-14〉. 〈inserm-00935627〉

Partager

Métriques

Consultations de la notice

949

Téléchargements de fichiers

346