Skip to Main content Skip to Navigation
Journal articles

Fold change rank ordering statistics: a new method for detecting differentially expressed genes.

Abstract : BACKGROUND: Different methods have been proposed for analyzing differentially expressed (DE) genes in microarray data. Methods based on statistical tests that incorporate expression level variability are used more commonly than those based on fold change (FC). However, FC based results are more reproducible and biologically relevant. RESULTS: We propose a new method based on fold change rank ordering statistics (FCROS). We exploit the variation in calculated FC levels using combinatorial pairs of biological conditions in the datasets. A statistic is associated with the ranks of the FC values for each gene, and the resulting probability is used to identify the DE genes within an error level. The FCROS method is deterministic, requires a low computational runtime and also solves the problem of multiple tests which usually arises with microarray datasets. CONCLUSION: We compared the performance of FCROS with those of other methods using synthetic and real microarray datasets. We found that FCROS is well suited for DE gene identification from noisy datasets when compared with existing FC based methods.
Complete list of metadatas

https://www.hal.inserm.fr/inserm-00935627
Contributor : Ed. Bmc <>
Submitted on : Thursday, January 23, 2014 - 5:23:23 PM
Last modification on : Friday, November 15, 2019 - 10:10:47 AM
Long-term archiving on: : Thursday, April 24, 2014 - 12:21:30 PM

Identifiers

Collections

Citation

Doulaye Dembélé, Philippe Kastner. Fold change rank ordering statistics: a new method for detecting differentially expressed genes.. BMC Bioinformatics, BioMed Central, 2014, 15 (1), pp.14. ⟨10.1186/1471-2105-15-14⟩. ⟨inserm-00935627⟩

Share

Metrics

Record views

1065

Files downloads

633