A. Baeyer, V. Villiger, W. J. Van-berkel, N. M. Kamerbeek, and M. W. Fraaije, Einwirkung des Caro'schen Reagens auf Ketone, Berichte der deutschen chemischen Gesellschaft 32 (1899) 3625?3633 Flavoprotein monooxygenases, a diverse class of oxidative biocatalysts, J Biotechnol, vol.1243, pp.670-689, 2006.

V. Alphand and R. Wohlgemuth, Applications of Baeyer-Villiger Monooxygenases in Organic Synthesis, Current Organic Chemistry, vol.14, issue.17, pp.1928-1965, 2010.
DOI : 10.2174/138527210792927519

V. Alphand, G. Carrea, R. Wohlgemuth, R. Furstoss, and J. M. Woodley, Towards largescale synthetic applications of Baeyer-Villiger monooxygenases Baeyer-Villiger Monooxygenases, an Emerging Family of Flavin-Dependent Biocatalysts, Trends Biotechnol Advanced Synthesis & Catalysis, vol.216, issue.345, pp.318-323, 2003.

J. Rehdorf, M. D. Mihovilovic, and U. T. Bornscheuer, Exploiting the regioselectivity of Baeyer-Villiger monooxygenases for the formation of beta-amino acids and beta-amino alcohols, Angew Chem Int Ed Engl, vol.497, pp.4506-4508, 2010.

J. Rehdorf, M. D. Mihovilovic, M. W. Fraaije, and U. T. Bornscheuer, Enzymatic synthesis of enantiomerically pure beta-amino ketones, beta-amino esters, and beta-amino alcohols with Baeyer-Villiger monooxygenases, Structural studies and synthetic applications of Baeyer-Villiger monooxygenases, pp.9525-9535, 1997.

I. Hilker, M. C. Gutierrez, R. Furstoss, J. Ward, R. Wohlgemuth et al., Preparative scale Baeyer???Villiger biooxidation at high concentration using recombinant Escherichia coli and in situ substrate feeding and product removal process, Nature Protocols, vol.349, issue.3, pp.546-554, 2008.
DOI : 10.1038/nprot.2007.532

Y. C. Chen, O. P. Peoples, and C. T. Walsh, Acinetobacter cyclohexanone monooxygenase: gene cloning and sequence determination., Journal of Bacteriology, vol.170, issue.2, pp.781-789, 1988.
DOI : 10.1128/jb.170.2.781-789.1988

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC210722

M. D. Mihovilovic, B. Müller, and P. Stanetty, Monooxygenase Mediated Baeyer-Villiger Oxidations Eur, J. Org. Chem, pp.3711-3730, 2002.
DOI : 10.1002/chin.200306230

N. Berezina, E. Kozma, R. Furstoss, and V. Alphand, Asymmetric Baeyer???Villiger Biooxidation of ??-Substituted Cyanocyclohexanones: Influence of the Substituent Length on Regio- and Enantioselectivity, Advanced Synthesis & Catalysis, vol.347, issue.11-12, pp.349-2049, 2007.
DOI : 10.1002/adsc.200700150

I. A. Mirza, B. J. Yachnin, S. Wang, S. Grosse, H. Bergeron et al., Crystal Structures of Cyclohexanone Monooxygenase Reveal Complex Domain Movements and a Sliding Cofactor, Journal of the American Chemical Society, vol.131, issue.25, pp.8848-8854, 2009.
DOI : 10.1021/ja9010578

E. Malito, A. Alfieri, M. W. Fraaije, and A. Mattevi, Crystal structure of a Baeyer-Villiger monooxygenase, Proceedings of the National Academy of Sciences, vol.101, issue.36, pp.13157-13162, 2004.
DOI : 10.1073/pnas.0404538101

M. G. Rossmann, M. J. Adams, M. Buehner, G. C. Ford, M. L. Hackert et al., Letter, Toxicological Sciences, vol.75, issue.1, pp.76-533, 1973.
DOI : 10.1093/toxsci/kfg176

R. K. Wierenga, P. Terpstra, and W. G. Hol, Prediction of the occurrence of the ADP- 19, p.29

M. Magrane and U. Consortium, UniProt Knowledgebase: a hub of integrated protein data, Database, vol.2011, issue.0, p.9, 2011.
DOI : 10.1093/database/bar009

M. W. Fraaije, J. Wu, D. P. Heuts, E. W. Van-hellemond, J. H. Spelberg et al., Discovery of a thermostable Baeyer???Villiger monooxygenase by genome mining, Applied Microbiology and Biotechnology, vol.78, issue.4, pp.393-400, 2005.
DOI : 10.1007/s00253-004-1749-5

H. Iwaki, S. Wang, S. Grosse, H. Bergeron, A. Nagahashi et al., Pseudomonad Cyclopentadecanone Monooxygenase Displaying an Uncommon Spectrum of Baeyer-Villiger Oxidations of Cyclic Ketones, Applied and Environmental Microbiology, vol.72, issue.4, pp.2707-2720, 2006.
DOI : 10.1128/AEM.72.4.2707-2720.2006

S. F. Altschul, T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang et al., Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Research, vol.25, issue.17, pp.3389-3402, 1997.
DOI : 10.1093/nar/25.17.3389

W. Li, L. Jaroszewski, and A. Godzik, Clustering of highly homologous sequences to reduce the size of large protein databases, Bioinformatics, vol.17, issue.3, pp.282-283, 2001.
DOI : 10.1093/bioinformatics/17.3.282

M. A. Larkin, G. Blackshields, N. P. Brown, R. Chenna, P. A. Mcgettigan et al., Clustal W and Clustal X version 2.0, Clustal W and Clustal X version 2.0, pp.2947-2948, 2007.
DOI : 10.1093/bioinformatics/btm404

URL : https://hal.archives-ouvertes.fr/hal-00206210

R. C. Edgar, MUSCLE: multiple sequence alignment with high accuracy and high throughput, Nucleic Acids Research, vol.32, issue.5, pp.1792-1797, 2004.
DOI : 10.1093/nar/gkh340

M. Clamp, J. Cuff, S. M. Searle, and G. J. Barton, The Jalview Java alignment editor, Bioinformatics, vol.20, issue.3, pp.426-427, 2004.
DOI : 10.1093/bioinformatics/btg430

S. Guindon and O. Gascuel, A Simple, Fast, and Accurate Algorithm to Estimate Large Phylogenies by Maximum Likelihood, Systematic Biology, vol.52, issue.5, pp.696-704, 2003.
DOI : 10.1080/10635150390235520

D. H. Huson, D. C. Richter, C. Rausch, T. Dezulian, M. Franz et al., Dendroscope: An interactive viewer for large phylogenetic trees, BMC Bioinformatics, vol.8, issue.1, p.460, 2007.
DOI : 10.1186/1471-2105-8-460

I. Mayrose, D. Graur, N. Ben-tal, and T. Pupko, Comparison of Site-Specific Rate-Inference Methods for Protein Sequences: Empirical Bayesian Methods Are Superior, Molecular Biology and Evolution, vol.21, issue.9, pp.1781-1791, 2004.
DOI : 10.1093/molbev/msh194

B. E. Suzek, H. Huang, P. Mcgarvey, R. Mazumder, and C. H. Wu, UniRef: comprehensive and non-redundant UniProt reference clusters, Bioinformatics, vol.23, issue.10, pp.1282-1288, 2007.
DOI : 10.1093/bioinformatics/btm098

M. H. Eppink, H. A. Schreuder, and W. J. Van-berkel, Identification of a novel conserved sequence motif in flavoprotein hydroxylases with a putative dual function in FAD/NAD(P)H binding, Protein Science, vol.30, issue.11, pp.2454-2458, 1997.
DOI : 10.1002/pro.5560061119

O. Vallon, New sequence motifs in flavoproteins: Evidence for common ancestry and tools to predict structure, Proteins: Structure, Function, and Genetics, vol.1119, issue.1, pp.95-114, 2000.
DOI : 10.1002/(SICI)1097-0134(20000101)38:1<95::AID-PROT10>3.0.CO;2-A

M. W. Fraaije, N. M. Kamerbeek, W. J. Van-berkel, and D. B. Janssen, Identification of a Baeyer-Villiger monooxygenase sequence motif, FEBS Letters, vol.176, issue.1-3, pp.43-47, 2002.
DOI : 10.1016/S0014-5793(02)02623-6

A. Riebel, H. M. Dudek, G. De-gonzalo, P. Stepniak, L. Rychlewski et al., Expanding the set of rhodococcal Baeyer???Villiger monooxygenases by high-throughput cloning, expression and substrate screening, Applied Microbiology and Biotechnology, vol.78, issue.6, pp.1479-1489
DOI : 10.1007/s00253-011-3823-0

D. Shortle, Mutational studies of protein structures and their stabilities, Quarterly Reviews of Biophysics, vol.265, issue.02, pp.205-250, 1992.
DOI : 10.1126/science.3388019

O. Lichtarge, H. R. Bourne, and F. E. Cohen, An Evolutionary Trace Method Defines Binding Surfaces Common to Protein Families, Journal of Molecular Biology, vol.257, issue.2, pp.342-35829, 1996.
DOI : 10.1006/jmbi.1996.0167

J. C. Gelly and A. G. De-brevern, Protein Peeling 3D: new tools for analyzing protein structures, Bioinformatics, vol.27, issue.1, pp.132-133, 2011.
DOI : 10.1093/bioinformatics/btq610

URL : https://hal.archives-ouvertes.fr/inserm-00568165

J. C. Gelly, A. G. De-brevern, and S. Hazout, 'Protein Peeling': an approach for splitting a 3D protein structure into compact fragments, Bioinformatics, vol.22, issue.2, pp.129-133, 2006.
DOI : 10.1093/bioinformatics/bti773

URL : https://hal.archives-ouvertes.fr/inserm-00133725

J. C. Gelly, C. Etchebest, S. Hazout, and A. G. De-brevern, Protein Peeling 2: a web server to convert protein structures into series of protein units, Nucleic Acids Research, vol.34, issue.Web Server, pp.75-78, 2006.
DOI : 10.1093/nar/gkl292

URL : https://hal.archives-ouvertes.fr/inserm-00133731

R. Sowdhamini and T. L. Blundell, An automatic method involving cluster analysis of secondary structures for the identification of domains in proteins, Protein Science, vol.25, issue.3, pp.506-520, 1995.
DOI : 10.1002/pro.5560040317

J. Liang, H. Edelsbrunner, and C. Woodward, Anatomy of protein pockets and cavities: Measurement of binding site geometry and implications for ligand design, Protein Science, vol.245, issue.9, pp.1884-1897, 1998.
DOI : 10.1002/pro.5560070905

K. Stierand, P. C. Maass, and M. Rarey, Molecular complexes at a glance: automated generation of two-dimensional complex diagrams, Bioinformatics, vol.22, issue.14, pp.1710-1716, 2006.
DOI : 10.1093/bioinformatics/btl150

K. Stierand and M. Rarey, From Modeling to Medicinal Chemistry: Automatic Generation of Two-Dimensional Complex Diagrams, ChemMedChem, vol.9, issue.6, pp.853-860, 2007.
DOI : 10.1002/cmdc.200700010