C. Varol, E. Zigmond, and S. Jung, Securing the immune tightrope: mononuclear phagocytes in the intestinal lamina propria, Nature Reviews Immunology, vol.25, issue.6, pp.415-426, 2010.
DOI : 10.1038/nri2778

C. Nathan, Neutrophils and immunity: challenges and opportunities, Nature Reviews Immunology, vol.280, issue.3, pp.173-182, 2006.
DOI : 10.1183/09031936.96.09071482

F. Fang, Antimicrobial reactive oxygen and nitrogen species: concepts and controversies, Nature Reviews Microbiology, vol.115, issue.10, pp.820-832, 2004.
DOI : 10.1038/nrmicro1004

C. Nathan and M. Shiloh, Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens, Proceedings of the National Academy of Sciences, vol.97, issue.16, pp.8841-8848, 2000.
DOI : 10.1073/pnas.97.16.8841

S. Holland, Chronic Granulomatous Disease, Clinical Reviews in Allergy & Immunology, vol.28, issue.1, pp.3-10, 2010.
DOI : 10.1007/s12016-009-8136-z

URL : https://hal.archives-ouvertes.fr/hal-00809510

P. Soler-palacin, C. Margareto, P. Llobet, O. Asensio, and M. Hernandez, Chronic granulomatous disease in pediatric patients: 25 years of experience, Allergologia et Immunopathologia, vol.35, issue.3, pp.83-89, 2007.
DOI : 10.1157/13106774

J. Van-den-berg, E. Van-koppen, A. Ahlin, B. Belohradsky, and E. Bernatowska, Chronic Granulomatous Disease: The European Experience, PLoS ONE, vol.8, issue.4, p.5234, 2009.
DOI : 10.1371/journal.pone.0005234.t017

URL : https://hal.archives-ouvertes.fr/hal-00382226

M. Kraaij, N. Savage, S. Van-der-kooij, K. Koekkoek, and J. Wang, Induction of regulatory T cells by macrophages is dependent on production of reactive oxygen species, Proceedings of the National Academy of Sciences, vol.107, issue.41, pp.17686-17691, 2010.
DOI : 10.1073/pnas.1012016107

K. Lee, H. Won, M. Bae, J. Hong, and E. Hwang, Spontaneous and aging-dependent development of arthritis in NADPH oxidase 2 deficiency through altered differentiation of CD11b+ and Th/Treg cells, Proceedings of the National Academy of Sciences, vol.108, issue.23, pp.9548-9553, 2011.
DOI : 10.1073/pnas.1012645108

J. Simonsen, K. Molbak, G. Falkenhorst, K. Krogfelt, and A. Linneberg, Estimation of incidences of infectious diseases based on antibody measurements, Statistics in Medicine, vol.135, issue.14, pp.1882-1895, 2009.
DOI : 10.1017/S0950268806006686

J. Conlan, Critical roles of neutrophils in host defense against experimental systemic infections of mice by Listeria monocytogenes, Salmonella typhimurium, and Yersinia enterocolitica, Infect Immun, vol.65, pp.630-635, 1997.

J. Conlan, Neutrophils prevent extracellular colonization of the liver microvasculature by Salmonella typhimurium, Infect Immun, vol.64, pp.1043-1047, 1996.

P. Mastroeni, A. Vazquez-torres, F. Fang, Y. Xu, and S. Khan, Antimicrobial Actions of the Nadph Phagocyte Oxidase and Inducible Nitric Oxide Synthase in Experimental Salmonellosis. II. Effects on Microbial Proliferation and Host Survival in Vivo, The Journal of Experimental Medicine, vol.62, issue.2, pp.237-248, 2000.
DOI : 10.1002/(SICI)1521-4141(199908)29:08<2498::AID-IMMU2498>3.0.CO;2-M

M. Ackermann, B. Stecher, N. Freed, P. Songhet, and W. Hardt, Self-destructive cooperation mediated by phenotypic noise, Nature, vol.261, issue.7207, pp.987-990, 2008.
DOI : 10.1038/nature07067

J. White, P. Mastroeni, J. Popoff, C. Evans, and J. Blackwell, Slc11a1-mediated resistance to Salmonella enterica serovar Typhimurium and Leishmania donovani infections does not require functional inducible nitric oxide synthase or phagocyte oxidase activity, Journal of Leukocyte Biology, vol.77, issue.3, pp.311-320, 2005.
DOI : 10.1189/jlb.0904546

M. Shiloh, J. Macmicking, S. Nicholson, J. Brause, and S. Potter, Phenotype of Mice and Macrophages Deficient in Both Phagocyte Oxidase and Inducible Nitric Oxide Synthase, Immunity, vol.10, issue.1, pp.29-38, 1999.
DOI : 10.1016/S1074-7613(00)80004-7

M. Mutunga, S. Graham, D. Hormaeche, R. Musson, J. Robinson et al., Attenuated Salmonella typhimurium htrA mutants cause fatal infections in mice deficient in NADPH oxidase and destroy NADPH oxidase-deficient macrophage monolayers, Vaccine, vol.22, issue.29-30, pp.4124-4131, 2004.
DOI : 10.1016/j.vaccine.2003.10.053

P. Kaiser, M. Diard, B. Stecher, and W. Hardt, The streptomycin mouse model for Salmonella diarrhea: functional analysis of the microbiota, the pathogen???s virulence factors, and the host???s mucosal immune response, Immunological Reviews, vol.73, issue.1, pp.56-83, 2012.
DOI : 10.1111/j.1600-065X.2011.01070.x

M. Barthel, S. Hapfelmeier, L. Quintanilla-martinez, M. Kremer, and M. Rohde, Pretreatment of Mice with Streptomycin Provides a Salmonella enterica Serovar Typhimurium Colitis Model That Allows Analysis of Both Pathogen and Host, Infection and Immunity, vol.71, issue.5, pp.2839-2858, 2003.
DOI : 10.1128/IAI.71.5.2839-2858.2003

S. Hapfelmeier, B. Stecher, M. Barthel, M. Kremer, and A. Müller, The Salmonella Pathogenicity Island (SPI)-2 and SPI-1 Type III Secretion Systems Allow Salmonella Serovar typhimurium to Trigger Colitis via MyD88-Dependent and MyD88-Independent Mechanisms, The Journal of Immunology, vol.174, issue.3, pp.1675-1685, 2005.
DOI : 10.4049/jimmunol.174.3.1675

S. Hapfelmeier, A. Muller, B. Stecher, P. Kaiser, and M. Barthel, . Typhimurium colitis, The Journal of Experimental Medicine, vol.58, issue.2, pp.437-450, 2008.
DOI : 10.1038/312548a0

D. Chakravortty and M. Hensel, Inducible nitric oxide synthase and control of intracellular bacterial pathogens, Microbes and Infection, vol.5, issue.7, pp.621-627, 2003.
DOI : 10.1016/S1286-4579(03)00096-0

I. Khan, J. Schwartzman, T. Matsuura, and L. Kasper, A dichotomous role for nitric oxide during acute Toxoplasma gondii infection in mice, Proceedings of the National Academy of Sciences, vol.94, issue.25, pp.13955-13960, 1997.
DOI : 10.1073/pnas.94.25.13955

J. Macmicking, C. Nathan, G. Hom, N. Chartrain, and D. Fletcher, Altered responses to bacterial infection and endotoxic shock in mice lacking inducible nitric oxide synthase, Cell, vol.81, issue.4, pp.641-650, 1995.
DOI : 10.1016/0092-8674(95)90085-3

B. Vallance, W. Deng, D. Grado, M. Chan, C. Jacobson et al., Modulation of Inducible Nitric Oxide Synthase Expression by the Attaching and Effacing Bacterial Pathogen Citrobacter rodentium in Infected Mice, Infection and Immunity, vol.70, issue.11, pp.6424-6435, 2002.
DOI : 10.1128/IAI.70.11.6424-6435.2002

M. Alam, T. Akaike, S. Okamoto, T. Kubota, and J. Yoshitake, Role of Nitric Oxide in Host Defense in Murine Salmonellosis as a Function of Its Antibacterial and Antiapoptotic Activities, Infection and Immunity, vol.70, issue.6, pp.3130-3142, 2002.
DOI : 10.1128/IAI.70.6.3130-3142.2002

M. Alam, M. Zaki, T. Sawa, S. Islam, and K. Ahmed, Nitric oxide produced in Peyer's patches exhibits antiapoptotic activity contributing to an antimicrobial effect in murine salmonellosis, Microbiology and Immunology, vol.170, issue.4, pp.197-208, 2008.
DOI : 10.1016/S0952-7915(99)00052-7

P. Songhet, M. Barthel, T. Rohn, L. Van-maele, and D. Cayet, IL-17A/F-Signaling Does Not Contribute to the Initial Phase of Mucosal Inflammation Triggered by S. Typhimurium, PLoS ONE, vol.179, issue.11, p.13804, 2010.
DOI : 10.1371/journal.pone.0013804.g006

URL : https://hal.archives-ouvertes.fr/inserm-00926613

S. Rakoff-nahoum, J. Paglino, F. Eslami-varzaneh, S. Edberg, and R. Medzhitov, Recognition of Commensal Microflora by Toll-Like Receptors Is Required for Intestinal Homeostasis, Cell, vol.118, issue.2, pp.229-241, 2004.
DOI : 10.1016/j.cell.2004.07.002

S. Jung, J. Aliberti, P. Graemmel, M. Sunshine, and G. Kreutzberg, Analysis of Fractalkine Receptor CX3CR1 Function by Targeted Deletion and Green Fluorescent Protein Reporter Gene Insertion, Molecular and Cellular Biology, vol.20, issue.11, pp.4106-4114, 2000.
DOI : 10.1128/MCB.20.11.4106-4114.2000

A. Savina, C. Jancic, S. Hugues, P. Guermonprez, and P. Vargas, NOX2 Controls Phagosomal pH to Regulate Antigen Processing during Crosspresentation by Dendritic Cells, Cell, vol.126, issue.1, pp.205-218, 2006.
DOI : 10.1016/j.cell.2006.05.035

S. Elsen, J. Doussiere, C. Villiers, M. Faure, and R. Berthier, Cryptic O2--generating NADPH oxidase in dendritic cells, Journal of Cell Science, vol.117, issue.11, pp.2215-2226, 2004.
DOI : 10.1242/jcs.01085

A. Mantegazza, A. Savina, M. Vermeulen, L. Perez, and J. Geffner, NADPH oxidase controls phagosomal pH and antigen cross-presentation in human dendritic cells, Blood, vol.112, issue.12, pp.4712-4722, 2008.
DOI : 10.1182/blood-2008-01-134791

URL : https://hal.archives-ouvertes.fr/hal-00356277

M. Gordon, Salmonella infections in immunocompromised adults, Journal of Infection, vol.56, issue.6, pp.413-422, 2008.
DOI : 10.1016/j.jinf.2008.03.012

E. Van-de-vosse, J. Van-dissel, and T. Ottenhoff, Genetic deficiencies of innate immune signalling in human infectious disease, The Lancet Infectious Diseases, vol.9, issue.11, pp.688-698, 2009.
DOI : 10.1016/S1473-3099(09)70255-5

M. Suar, B. Periaswamy, P. Songhet, B. Misselwitz, and A. Muller, Accelerated Type III Secretion System 2-Dependent Enteropathogenesis by a Salmonella enterica Serovar Enteritidis PT4/6 Strain, Infection and Immunity, vol.77, issue.9, pp.3569-3577, 2009.
DOI : 10.1128/IAI.00511-09

S. Talbot, S. Totemeyer, M. Yamamoto, S. Akira, and K. Hughes, serovar Typhimurium infection, but not for the initiation of bacterial clearance, Immunology, vol.74, issue.4, pp.472-483, 2009.
DOI : 10.1111/j.1365-2567.2009.03146.x

D. Weiss, B. Raupach, K. Takeda, S. Akira, and A. Zychlinsky, Toll-Like Receptors Are Temporally Involved in Host Defense, The Journal of Immunology, vol.172, issue.7, pp.4463-4469, 2004.
DOI : 10.4049/jimmunol.172.7.4463

S. Rhee, W. Walker, and B. Cherayil, Developmentally Regulated Intestinal Expression of IFN-?? and Its Target Genes and the Age-Specific Response to Enteric Salmonella Infection, The Journal of Immunology, vol.175, issue.2, pp.1127-1136, 2005.
DOI : 10.4049/jimmunol.175.2.1127

E. Silva-herzog and C. Detweiler, Intracellular microbes and haemophagocytosis, Cellular Microbiology, vol.112, issue.11, pp.2151-2158, 2008.
DOI : 10.1111/j.1462-5822.2008.01192.x

R. Santos, M. Raffatellu, C. Bevins, L. Adams, and C. Tukel, Life in the inflamed intestine, Salmonella style, Trends in Microbiology, vol.17, issue.11, pp.498-506, 2009.
DOI : 10.1016/j.tim.2009.08.008

L. Harrington, C. Srikanth, A. R. Shi, H. Cherayil, and B. , serovar Typhimurium, FEMS Immunology & Medical Microbiology, vol.51, issue.2, pp.372-380, 2007.
DOI : 10.1111/j.1574-695X.2007.00313.x

Y. Ohno and J. Gallin, Diffusion of extracellular hydrogen peroxide into intracellular compartments of human neutrophils. Studies utilizing the inactivation of myeloperoxidase by hydrogen peroxide and azide, J Biol Chem, vol.260, pp.8438-8446, 1985.

J. Rex, J. Bennett, J. Gallin, H. Malech, and D. Melnick, Normal and Deficient Neutrophils Can Cooperate to Damage Aspergillus fumigatus Hyphae, Journal of Infectious Diseases, vol.162, issue.2, pp.523-528, 1990.
DOI : 10.1093/infdis/162.2.523

A. Pizzolla, M. Hultqvist, B. Nilson, M. Grimm, and T. Eneljung, Reactive Oxygen Species Produced by the NADPH Oxidase 2 Complex in Monocytes Protect Mice from Bacterial Infections, The Journal of Immunology, vol.188, issue.10, pp.5003-5011, 2012.
DOI : 10.4049/jimmunol.1103430

H. Bjorgvinsdottir, C. Ding, N. Pech, M. Gifford, and L. Li, Retroviralmediated gene transfer of gp91phox into bone marrow cells rescues defect in host defense against Aspergillus fumigatus in murine X-linked chronic granulomatous disease, Blood, vol.89, pp.41-48, 1997.

M. Dinauer, M. Gifford, N. Pech, L. Li, and P. Emshwiller, Variable correction of host defense following gene transfer and bone marrow transplantation in murine X-linked chronic granulomatous disease, Blood, vol.97, issue.12, pp.3738-3745, 2001.
DOI : 10.1182/blood.V97.12.3738

D. Kuhns, W. Alvord, T. Heller, J. Feld, and K. Pike, Residual NADPH Oxidase and Survival in Chronic Granulomatous Disease, New England Journal of Medicine, vol.363, issue.27, pp.2600-2610, 2010.
DOI : 10.1056/NEJMoa1007097

M. Grez, J. Reichenbach, J. Schwable, R. Seger, and M. Dinauer, Gene Therapy of Chronic Granulomatous Disease: The Engraftment Dilemma, Molecular Therapy, vol.19, issue.1, pp.28-35, 2011.
DOI : 10.1038/mt.2010.232

R. Kappeli, P. Kaiser, B. Stecher, and W. Hardt, Roles of spvB and spvC in S. Typhimurium colitis via the alternative pathway, International Journal of Medical Microbiology, vol.301, issue.2, pp.117-124, 2011.
DOI : 10.1016/j.ijmm.2010.08.017

B. Marciano, S. Rosenzweig, D. Kleiner, V. Anderson, and D. Darnell, Gastrointestinal Involvement in Chronic Granulomatous Disease, PEDIATRICS, vol.114, issue.2, pp.462-468, 2004.
DOI : 10.1542/peds.114.2.462

A. Muller, P. Kaiser, K. Dittmar, T. Weber, and S. Haueter, Salmonella Gut Invasion Involves TTSS-2-Dependent Epithelial Traversal, Basolateral Exit, and Uptake by Epithelium-Sampling Lamina Propria Phagocytes, Cell Host & Microbe, vol.11, issue.1, pp.19-32, 2012.
DOI : 10.1016/j.chom.2011.11.013

M. Hensel, J. Shea, C. Gleeson, M. Jones, and E. Dalton, Simultaneous identification of bacterial virulence genes by negative selection, Science, vol.269, issue.5222, pp.400-403, 1995.
DOI : 10.1126/science.7618105

J. Galan and R. Curtiss, Cloning and molecular characterization of genes whose products allow Salmonella typhimurium to penetrate tissue culture cells., Proceedings of the National Academy of Sciences, vol.86, issue.16, pp.6383-6387, 1989.
DOI : 10.1073/pnas.86.16.6383

J. Bispham, B. Tripathi, P. Watson, and T. Wallis, Salmonella Pathogenicity Island 2 Influences Both Systemic Salmonellosis and Salmonella-Induced Enteritis in Calves, Infection and Immunity, vol.69, issue.1, pp.367-377, 2001.
DOI : 10.1128/IAI.69.1.367-377.2001

B. Coombes, B. Coburn, A. Potter, S. Gomis, and K. Mirakhur, Analysis of the Contribution of Salmonella Pathogenicity Islands 1 and 2 to Enteric Disease Progression Using a Novel Bovine Ileal Loop Model and a Murine Model of Infectious Enterocolitis, Infection and Immunity, vol.73, issue.11, pp.7161-7169, 2005.
DOI : 10.1128/IAI.73.11.7161-7169.2005

B. Coburn, Y. Li, D. Owen, B. Vallance, and B. Finlay, Salmonella enterica Serovar Typhimurium Pathogenicity Island 2 Is Necessary for Complete Virulence in a Mouse Model of Infectious Enterocolitis, Infection and Immunity, vol.73, issue.6, pp.3219-3227, 2005.
DOI : 10.1128/IAI.73.6.3219-3227.2005

D. Chakravortty, I. Hansen-wester, and M. Hensel, from Reactive Nitrogen Intermediates, The Journal of Experimental Medicine, vol.180, issue.9, pp.1155-1166, 2002.
DOI : 10.1084/jem.20011547

A. Vazquez-torres, Y. Xu, J. Jones-carson, D. Holden, and S. Lucia, Salmonella Pathogenicity Island 2-Dependent Evasion of the Phagocyte NADPH Oxidase, Science, vol.287, issue.5458, pp.1655-1658, 2000.
DOI : 10.1126/science.287.5458.1655

H. Charbonneau, N. Tonks, K. Walsh, and E. Fischer, The leukocyte common antigen (CD45): a putative receptor-linked protein tyrosine phosphatase., Proceedings of the National Academy of Sciences, vol.85, issue.19, pp.7182-7186, 1988.
DOI : 10.1073/pnas.85.19.7182

J. Pollock, D. Williams, M. Gifford, L. Li, and X. Du, Mouse model of X???linked chronic granulomatous disease, an inherited defect in phagocyte superoxide production, Nature Genetics, vol.57, issue.2, pp.202-209, 1995.
DOI : 10.1038/349257a0

V. Laubach, E. Shesely, O. Smithies, and P. Sherman, Mice lacking inducible nitric oxide synthase are not resistant to lipopolysaccharide-induced death., Proceedings of the National Academy of Sciences, vol.92, issue.23, pp.10688-10692, 1995.
DOI : 10.1073/pnas.92.23.10688

S. Jung, D. Unutmaz, P. Wong, G. Sano, and K. De-los-santos, In Vivo Depletion of CD11c+ Dendritic Cells Abrogates Priming of CD8+ T Cells by Exogenous Cell-Associated Antigens, Immunity, vol.17, issue.2, pp.211-220, 2002.
DOI : 10.1016/S1074-7613(02)00365-5

O. Adachi, T. Kawai, K. Takeda, M. Matsumoto, and H. Tsutsui, Targeted Disruption of the MyD88 Gene Results in Loss of IL-1- and IL-18-Mediated Function, Immunity, vol.9, issue.1, pp.143-150, 1998.
DOI : 10.1016/S1074-7613(00)80596-8

A. Muller, C. Hoffmann, M. Galle, A. Van-den-broeke, and M. Heikenwalder, The S. Typhimurium Effector SopE Induces Caspase-1 Activation in Stromal Cells to Initiate Gut Inflammation, Cell Host & Microbe, vol.6, issue.2, pp.125-136, 2009.
DOI : 10.1016/j.chom.2009.07.007

URL : https://hal.archives-ouvertes.fr/in2p3-00671043

K. Kaniga, J. Bossio, and J. Galan, The Salmonella typhimurium invasion genes invF and invG encode homologues of the AraC and PulD family of proteins, Molecular Microbiology, vol.60, issue.4, pp.555-568, 1994.
DOI : 10.1073/pnas.82.4.1074

S. Hoiseth and B. Stocker, Aromatic-dependent Salmonella typhimurium are non-virulent and effective as live vaccines, Nature, vol.58, issue.5812, pp.238-239, 1981.
DOI : 10.1038/291238a0

S. Hapfelmeier, K. Ehrbar, B. Stecher, M. Barthel, and M. Kremer, Role of the Salmonella Pathogenicity Island 1 Effector Proteins SipA, SopB, SopE, and SopE2 in Salmonella enterica Subspecies 1 Serovar Typhimurium Colitis in Streptomycin-Pretreated Mice, Infection and Immunity, vol.72, issue.2, pp.795-809, 2004.
DOI : 10.1128/IAI.72.2.795-809.2004