K. Takahashi, K. Tanabe, M. Ohnuki, M. Narita, T. Ichisaka et al., Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors, Cell, vol.131, issue.5, pp.861-872, 2007.
DOI : 10.1016/j.cell.2007.11.019

J. Yu, M. Vodyanik, K. Smuga-otto, J. Antosiewicz-bourget, J. Frane et al., Induced pluripotent stem cell lines derived from human somatic cells, Science, vol.318, 2007.

N. Montserrat, E. Nivet, I. Sancho-martinez, T. Hishida, S. Kumar et al., Reprogramming of Human Fibroblasts to Pluripotency with Lineage Specifiers, Cell Stem Cell, vol.13, issue.3, pp.341-350, 2013.
DOI : 10.1016/j.stem.2013.06.019

Y. Rais, A. Zviran, S. Geula, O. Gafni, E. Chomsky et al., Deterministic direct reprogramming of somatic cells to pluripotency, Nature, vol.484, issue.7469, pp.65-70, 2013.
DOI : 10.1038/nature12587

M. Luo, T. Ling, W. Xie, H. Sun, Y. Zhou et al., NuRD Blocks Reprogramming of Mouse Somatic Cells into Pluripotent Stem Cells, STEM CELLS, vol.8, issue.7, pp.1278-1286, 2013.
DOI : 10.1002/stem.1374

S. Toivonen, M. Ojala, A. Hyysalo, T. Ilmarinen, K. Rajala et al., Comparative Analysis of Targeted Differentiation of Human Induced Pluripotent Stem Cells (hiPSCs) and Human Embryonic Stem Cells Reveals Variability Associated With Incomplete Transgene Silencing in Retrovirally Derived hiPSC Lines, STEM CELLS Translational Medicine, vol.4, issue.2, pp.83-93, 2013.
DOI : 10.5966/sctm.2012-0047

M. Khan, K. Narayanan, H. Lu, Y. Choo, C. Du et al., Delivery of reprogramming factors into fibroblasts for generation of non-genetic induced pluripotent stem cells using a cationic bolaamphiphile as a non-viral vector, Biomaterials, vol.34, issue.21, pp.5336-5343, 2013.
DOI : 10.1016/j.biomaterials.2013.03.072

J. Heng, B. Feng, J. Han, J. Jiang, P. Kraus et al., The Nuclear Receptor Nr5a2 Can Replace Oct4 in the Reprogramming of Murine Somatic Cells to Pluripotent Cells, Cell Stem Cell, vol.6, issue.2, pp.167-174, 2010.
DOI : 10.1016/j.stem.2009.12.009

X. Liu, H. Sun, J. Qi, L. Wang, S. He et al., Sequential introduction of reprogramming factors reveals a time-sensitive requirement for individual factors and a sequential EMT???MET mechanism for optimal reprogramming, Nature Cell Biology, vol.7, issue.7, pp.829-838, 2013.
DOI : 10.1038/cr.2011.51

B. Chou, P. Mali, X. Huang, Z. Ye, S. Dowey et al., Efficient human iPS cell derivation by a non-integrating plasmid from blood cells with unique epigenetic and gene expression signatures, Cell Research, vol.460, issue.3, pp.518-529, 2011.
DOI : 10.1038/nature08592

C. Easley, T. Miki, C. Castro, J. Ozolek, C. Minervini et al., Human amniotic epithelial cells are reprogrammed more efficiently by induced pluripotency than adult fibroblasts, Cell Reprogram, vol.14, pp.193-203, 2012.

T. Aasen, I. Belmonte, and J. , Isolation and cultivation of human keratinocytes from skin or plucked hair for the generation of induced pluripotent stem cells, Nature Protocols, vol.8, issue.2, pp.371-382, 2010.
DOI : 10.1038/nprot.2008.92

Y. Zhang, E. Mcneill, H. Tian, S. Soker, K. Andersson et al., Urine Derived Cells are a Potential Source for Urological Tissue Reconstruction, The Journal of Urology, vol.180, issue.5, pp.2226-2233, 2008.
DOI : 10.1016/j.juro.2008.07.023

S. Bharadwaj, G. Liu, Y. Shi, R. Wu, Y. B. He et al., Multipotential differentiation of human urine-derived stem cells: Potential for therapeutic applications in urology, STEM CELLS, vol.18, issue.9, pp.1840-1856, 2013.
DOI : 10.1002/stem.1424

T. Zhou, C. Benda, S. Dunzinger, Y. Huang, J. Ho et al., Generation of human induced pluripotent stem cells from urine samples, Nature Protocols, vol.16, issue.12, pp.2080-2089, 2012.
DOI : 10.1016/j.stem.2011.01.013

R. Lang, G. Liu, Y. Shi, S. Bharadwaj, X. Leng et al., Self-Renewal and Differentiation Capacity of Urine-Derived Stem Cells after Urine Preservation for 24 Hours, PLoS ONE, vol.31, issue.1, p.53980, 2013.
DOI : 10.1371/journal.pone.0053980.s002

F. Anokye-danso, C. Trivedi, D. Juhr, M. Gupta, Z. Cui et al., Highly Efficient miRNA-Mediated Reprogramming of Mouse and Human Somatic Cells to Pluripotency, Cell Stem Cell, vol.8, issue.4, pp.376-388, 2011.
DOI : 10.1016/j.stem.2011.03.001

Y. Xue, X. Cai, L. Wang, B. Liao, H. Zhang et al., Generating a Non-Integrating Human Induced Pluripotent Stem Cell Bank from Urine-Derived Cells, PLoS ONE, vol.30, issue.8, p.70573, 2013.
DOI : 10.1371/journal.pone.0070573.s006

J. Lowenthal, S. Lipnick, M. Rao, and S. Hull, Specimen Collection for Induced Pluripotent Stem Cell Research: Harmonizing the Approach to Informed Consent, STEM CELLS Translational Medicine, vol.1, issue.suppl 1, pp.409-421, 2012.
DOI : 10.5966/sctm.2012-0029

K. Yusa, S. Rashid, H. Strick-marchand, I. Varela, P. Liu et al., Targeted gene correction of ??1-antitrypsin deficiency in induced pluripotent stem cells, Nature, vol.649, issue.7369, pp.391-394, 2011.
DOI : 10.1016/j.stem.2010.06.003

Q. Ding, Y. Lee, E. Schaefer, D. Peters, A. Veres et al., A TALEN Genome-Editing System for Generating Human Stem Cell-Based Disease Models, Cell Stem Cell, vol.12, issue.2, pp.238-251, 2013.
DOI : 10.1016/j.stem.2012.11.011

Q. Ding, S. Regan, Y. Xia, L. Oostrom, C. Cowan et al., Enhanced Efficiency of Human Pluripotent Stem Cell Genome Editing through Replacing TALENs with CRISPRs, Cell Stem Cell, vol.12, issue.4, pp.393-394, 2013.
DOI : 10.1016/j.stem.2013.03.006

M. Kajiwara, T. Aoi, K. Okita, R. Takahashi, H. Inoue et al., Donor-dependent variations in hepatic differentiation from human-induced pluripotent stem cells, Proceedings of the National Academy of Sciences, vol.109, issue.31, pp.12538-12543
DOI : 10.1073/pnas.1209979109

K. Si-tayeb, F. Lemaigre, and S. Duncan, Organogenesis and Development of the Liver, Developmental Cell, vol.18, issue.2, pp.175-189, 2010.
DOI : 10.1016/j.devcel.2010.01.011

N. Hannan, C. Segeritz, T. Touboul, and L. Vallier, Production of hepatocyte-like cells from human pluripotent stem cells, Nature Protocols, vol.8, issue.2, pp.430-437, 2013.
DOI : 10.1002/stem.199

K. Si-tayeb, F. Noto, M. Nagaoka, J. Li, M. Battle et al., Highly efficient generation of human hepatocyte-like cells from induced pluripotent stem cells, Hepatology, vol.26, issue.1, pp.297-305, 2010.
DOI : 10.1002/hep.23354

Z. Song, J. Cai, Y. Liu, D. Zhao, J. Yong et al., Efficient generation of hepatocyte-like cells from human induced pluripotent stem cells, Cell Research, vol.27, issue.11, pp.1233-1242, 2009.
DOI : 10.1053/j.gastro.2007.12.024

G. Sullivan, D. Hay, I. Park, J. Fletcher, Z. Hannoun et al., Generation of functional human hepatic endoderm from human induced pluripotent stem cells, Hepatology, vol.27, issue.1, pp.329-335, 2010.
DOI : 10.1002/hep.23335

J. Ferrini, L. Pichard, J. Domergue, and P. Maurel, Long-term primary cultures of adult human hepatocytes, Chemico-Biological Interactions, vol.107, issue.1-2, pp.31-45, 1997.
DOI : 10.1016/S0009-2797(97)00072-0

L. Pichard, E. Raulet, G. Fabre, J. Ferrini, J. Ourlin et al., Human Hepatocyte Culture, Methods Mol Biol, vol.320, pp.283-293, 2006.
DOI : 10.1385/1-59259-998-2:283

D. Runge, D. Runge, D. Jäger, K. Lubecki, B. Stolz et al., Serum-Free, Long-Term Cultures of Human Hepatocytes: Maintenance of Cell Morphology, Transcription Factors, and Liver-Specific Functions, Biochemical and Biophysical Research Communications, vol.269, issue.1, pp.46-53, 2000.
DOI : 10.1006/bbrc.2000.2215

C. Biron-andréani, C. Bezat-bouchahda, E. Raulet, L. Pichard-garcia, J. Fabre et al., Secretion of functional plasma haemostasis proteins in long-term primary cultures of human hepatocytes, British Journal of Haematology, vol.227, issue.5, pp.638-646, 2004.
DOI : 10.1006/bbrc.1997.7440

C. Guguen-guillouzo and A. Guillouzo, General Review on In Vitro Hepatocyte Models and Their Applications, Methods Mol Biol, vol.640, pp.1-40, 2010.
DOI : 10.1007/978-1-60761-688-7_1

URL : https://hal.archives-ouvertes.fr/hal-00742202

R. Hoekstra, G. Nibourg, T. Van-der-hoeven, M. Ackermans, T. Hakvoort et al., The HepaRG cell line is suitable for bioartificial liver application, The International Journal of Biochemistry & Cell Biology, vol.43, issue.10, pp.1483-1489, 2011.
DOI : 10.1016/j.biocel.2011.06.011

M. Lübberstedt, U. Müller-vieira, M. Mayer, K. Biemel, F. Knöspel et al., HepaRG human hepatic cell line utility as a surrogate for primary human hepatocytes in drug metabolism assessment in vitro, Journal of Pharmacological and Toxicological Methods, vol.63, issue.1, pp.59-68, 2011.
DOI : 10.1016/j.vascn.2010.04.013

J. Hengstler, M. Brulport, W. Schormann, A. Bauer, M. Hermes et al., Generation of human hepatocytes by stem cell technology: definition of the hepatocyte, Expert Opinion on Drug Metabolism & Toxicology, vol.27, issue.1, pp.61-74, 2005.
DOI : 10.1097/01.TP.0000157362.91322.82

S. Snykers, D. Kock, J. Rogiers, V. Vanhaecke, and T. , In Vitro Differentiation of Embryonic and Adult Stem Cells into Hepatocytes: State of the Art, Stem Cells, vol.12, issue.III-XIII, pp.577-605, 2009.
DOI : 10.1634/stemcells.2008-0963

P. Sancho-bru, M. Najimi, M. Caruso, K. Pauwelyn, T. Cantz et al., Stem and progenitor cells for liver repopulation: can we standardise the process from bench to bedside?, Gut, vol.58, issue.4, pp.594-603, 2009.
DOI : 10.1136/gut.2008.171116

S. Han, Generation of Functional Hepatic Cells from Pluripotent Stem Cells, Journal of Stem Cell Research & Therapy, vol.01, issue.S10, pp.329-335, 2012.
DOI : 10.4172/2157-7633.S10-008

S. Rao, M. Sasikala, M. , N. Reddy, and D. , Thinking outside the liver: Induced pluripotent stem cells for hepatic applications, World Journal of Gastroenterology, vol.19, issue.22, pp.3385-3396, 2013.
DOI : 10.3748/wjg.v19.i22.3385

H. Liu, Z. Ye, Y. Kim, S. Sharkis, and Y. Jang, Generation of endoderm-derived human induced pluripotent stem cells from primary hepatocytes, Hepatology, vol.4, issue.5, pp.1810-1819, 2010.
DOI : 10.1002/hep.23626

S. Rashid, S. Corbineau, N. Hannan, S. Marciniak, E. Miranda et al., Modeling inherited metabolic disorders of the liver using human induced pluripotent stem cells, Journal of Clinical Investigation, vol.120, issue.9, pp.3127-3136, 2010.
DOI : 10.1172/JCI43122DS1

T. Touboul, N. Hannan, S. Corbineau, A. Martinez, C. Martinet et al., Generation of functional hepatocytes from human embryonic stem cells under chemically defined conditions that recapitulate liver development Generation of liver disease-specific induced pluripotent stem cells along with efficient differentiation to functional hepatocyte-like cells, vivo liver regeneration potential of human induced pluripotent stem cells from diverse origins, pp.622-632, 2010.

Y. Chen, C. Tseng, H. Wang, H. Kuo, V. Yang et al., Rapid generation of mature hepatocyte-like cells from human induced pluripotent stem cells by an efficient three-step protocol, Hepatology, vol.17, issue.4, pp.1193-1203, 2012.
DOI : 10.1002/hep.24790

M. Inamura, K. Kawabata, K. Takayama, K. Tashiro, F. Sakurai et al., Efficient Generation of Hepatoblasts From Human ES Cells and iPS Cells by Transient Overexpression of Homeobox Gene HEX, Molecular Therapy, vol.19, issue.2, pp.400-407, 2011.
DOI : 10.1038/mt.2010.241

J. Jozefczuk, A. Prigione, L. Chavez, and J. Adjaye, Comparative Analysis of Human Embryonic Stem Cell and Induced Pluripotent Stem Cell-Derived Hepatocyte-Like Cells Reveals Current Drawbacks and Possible Strategies for Improved Differentiation, Stem Cells and Development, vol.20, issue.7, pp.1259-1275, 2011.
DOI : 10.1089/scd.2010.0361

A. Takata, M. Otsuka, T. Kogiso, K. Kojima, T. Yoshikawa et al., Direct differentiation of hepatic cells from human induced pluripotent stem cells using a limited number of cytokines, Hepatology International, vol.130, issue.4, 2011.
DOI : 10.1007/s12072-011-9251-5

K. Takayama, M. Inamura, K. Kawabata, K. Tashiro, K. Katayama et al., Efficient and Directive Generation of Two Distinct Endoderm Lineages from Human ESCs and iPSCs by Differentiation Stage-Specific SOX17 Transduction, PLoS ONE, vol.343, issue.7, p.21780, 2011.
DOI : 10.1371/journal.pone.0021780.s010

K. Takayama, M. Inamura, K. Kawabata, K. Katayama, M. Higuchi et al., Efficient Generation of Functional Hepatocytes From Human Embryonic Stem Cells and Induced Pluripotent Stem Cells by HNF4?? Transduction, Molecular Therapy, vol.20, issue.1, pp.127-137, 2012.
DOI : 10.1038/mt.2011.234

K. Takayama, M. Inamura, K. Kawabata, M. Sugawara, K. Kikuchi et al., Generation of metabolically functioning hepatocytes from human pluripotent stem cells by FOXA2 and HNF1?? transduction, Journal of Hepatology, vol.57, issue.3, pp.628-636, 2012.
DOI : 10.1016/j.jhep.2012.04.038

Y. Nagamoto, K. Tashiro, K. Takayama, K. Ohashi, K. Kawabata et al., The promotion of hepatic maturation of human pluripotent stem cells in 3D co-culture using type I collagen and Swiss 3T3 cell sheets, Biomaterials, vol.33, issue.18, pp.4526-4534, 2012.
DOI : 10.1016/j.biomaterials.2012.03.011

N. Nakamura, K. Saeki, M. Mitsumoto, S. Matsuyama, M. Nishio et al., Feeder-free and serum-free production of hepatocytes, cholangiocytes, and their proliferating progenitors from human pluripotent stem cells: application to liver-specific functional and cytotoxic assays, Cell Reprogram, vol.14, pp.171-185, 2012.

D. Woo, S. Kim, H. Lim, J. Heo, H. Park et al., Direct and Indirect Contribution of Human Embryonic Stem Cell???Derived Hepatocyte-Like Cells to Liver Repair in Mice, Gastroenterology, vol.142, issue.3, pp.602-611, 2012.
DOI : 10.1053/j.gastro.2011.11.030

K. Takayama, K. Kawabata, Y. Nagamoto, K. Kishimoto, K. Tashiro et al., 3D spheroid culture of hESC/hiPSC-derived hepatocyte-like cells for drug toxicity testing, Biomaterials, vol.34, issue.7, pp.1781-1789, 2013.
DOI : 10.1016/j.biomaterials.2012.11.029

M. Vosough, E. Omidinia, M. Kadivar, M. Shokrgozar, B. Pournasr et al., Generation of Functional Hepatocyte-Like Cells from Human Pluripotent Stem Cells in a Scalable Suspension Culture, Stem Cells and Development, vol.22, issue.20, pp.2693-2705, 2013.
DOI : 10.1089/scd.2013.0088

A. Yanagida, K. Ito, H. Chikada, H. Nakauchi, and A. Kamiya, An In Vitro Expansion System for Generation of Human iPS Cell-Derived Hepatic Progenitor-Like Cells Exhibiting a Bipotent Differentiation Potential, PLoS ONE, vol.39, issue.7, p.67541, 2013.
DOI : 10.1371/journal.pone.0067541.s008

K. Stevens, M. Ungrin, R. Schwartz, S. Ng, B. Carvalho et al., InVERT molding for scalable control of tissue microarchitecture, Nature Communications, vol.16, p.1847, 2013.
DOI : 10.1038/ncomms2853

J. Shan, R. Schwartz, N. Ross, D. Logan, D. Thomas et al., Identification of small molecules for human hepatocyte expansion and iPS differentiation, Nature Chemical Biology, vol.42, issue.8, pp.514-520
DOI : 10.1038/nbt1393

T. Takebe, K. Sekine, M. Enomura, H. Koike, M. Kimura et al., Vascularized and functional human liver from an iPSC-derived organ bud transplant, Nature, vol.51, issue.7459, pp.481-484, 2013.
DOI : 10.1073/pnas.1109767108

C. Medine, B. Lucendo-villarin, C. Storck, F. Wang, D. Szkolnicka et al., Developing High-Fidelity Hepatotoxicity Models From Pluripotent Stem Cells, STEM CELLS Translational Medicine, vol.53, issue.7, pp.505-509, 2013.
DOI : 10.5966/sctm.2012-0138

W. Krueger, B. Tanasijevic, V. Barber, A. Flamier, X. Gu et al., Cholesterol-Secreting and Statin-Responsive Hepatocytes from Human ES and iPS Cells to Model Hepatic Involvement in Cardiovascular Health, PLoS ONE, vol.110, issue.7, p.67296, 2013.
DOI : 10.1371/journal.pone.0067296.s006

S. Ogawa, J. Surapisitchat, C. Virtanen, M. Ogawa, M. Niapour et al., Three-dimensional culture and cAMP signaling promote the maturation of human pluripotent stem cell-derived hepatocytes, Development, vol.140, issue.15, pp.3285-3296, 2013.
DOI : 10.1242/dev.090266

P. Godoy, N. Hewitt, U. Albrecht, M. Andersen, N. Ansari et al., Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME, Archives of Toxicology, vol.331, issue.5, pp.1315-1530, 2013.
DOI : 10.1007/s00204-013-1078-5

URL : https://hal.archives-ouvertes.fr/hal-00939009

M. Shulman and Y. Nahmias, Long-Term Culture and Coculture of Primary Rat and Human Hepatocytes, Methods Mol Biol, vol.945, pp.287-302, 2013.
DOI : 10.1007/978-1-62703-125-7_17

F. Lemaigre, Mechanisms of Liver Development: Concepts for Understanding Liver Disorders and Design of Novel Therapies, Gastroenterology, vol.137, issue.1, pp.62-79, 2009.
DOI : 10.1053/j.gastro.2009.03.035

M. Kanai-azuma, Y. Kanai, J. Gad, Y. Tajima, C. Taya et al., Depletion of definitive gut endoderm in Sox17-null mutant mice, pp.2367-2379, 2002.

A. Kubo, Y. Kim, S. Irion, S. Kasuda, M. Takeuchi et al., regulates hepatocyte differentiation from embryonic stem cell-derived endoderm, Hepatology, vol.442, issue.2, pp.633-641, 2010.
DOI : 10.1002/hep.23293

C. Lee, J. Friedman, J. Fulmer, and K. Kaestner, The initiation of liver development is dependent on Foxa transcription factors, Nature, vol.435, issue.7044, pp.944-947, 2005.
DOI : 10.1038/nature03649

M. Nagaki and H. Moriwaki, Transcription factor HNF and hepatocyte differentiation, Hepatology Research, vol.44, issue.10, pp.961-969, 2008.
DOI : 10.1111/j.1872-034X.2008.00367.x

D. Odom, N. Zizlsperger, D. Gordon, G. Bell, N. Rinaldi et al., Control of pancreas and liver gene expression by HNF transcription factors Integrated approach for the identification of human hepatocyte nuclear factor 4alpha target genes using protein binding microarrays, Science Hepatology, vol.303, issue.51, pp.642-653, 2004.

N. Briançon, A. Bailly, F. Clotman, P. Jacquemin, F. Lemaigre et al., Expression of the ??7 Isoform of Hepatocyte Nuclear Factor (HNF) 4 Is Activated by HNF6/OC-2 and HNF1 and Repressed by HNF4??1 in the Liver, Journal of Biological Chemistry, vol.279, issue.32, pp.33398-33408, 2004.
DOI : 10.1074/jbc.M405312200

J. Pascussi, A. Robert, A. Moreau, J. Ramos, P. Bioulac-sage et al., Differential regulation of constitutive androstane receptor expression by hepatocyte nuclear factor4?? isoforms, Hepatology, vol.20, issue.5, pp.1146-1153, 2007.
DOI : 10.1002/hep.21592

N. Funakoshi, C. Duret, J. Pascussi, P. Blanc, P. Maurel et al., Comparison of Hepatic-like Cell Production from Human Embryonic Stem Cells and Adult Liver Progenitor Cells: CAR Transduction Activates a Battery of Detoxification Genes, Stem Cell Reviews and Reports, vol.48, issue.5, pp.518-531, 2011.
DOI : 10.1007/s12015-010-9225-3

S. Sekiya and A. Suzuki, Direct conversion of mouse fibroblasts to hepatocyte-like cells by defined factors, Nature, vol.32, issue.7356, pp.390-393, 2011.
DOI : 10.1038/nature10263

P. Huang, Z. He, J. S. Sun, H. Xiang, D. Liu et al., Induction of functional hepatocyte-like cells from mouse fibroblasts by defined factors, Nature, vol.39, issue.7356, pp.386-389, 2011.
DOI : 10.1038/nature10116

S. Beath, Hepatic function and physiology in the newborn, Seminars in Neonatology, vol.8, issue.5, pp.337-346, 2003.
DOI : 10.1016/S1084-2756(03)00066-6

T. Uchino, F. Endo, S. Ikeda, K. Shiraki, Y. Sera et al., Three brothers with progressive hepatic dysfunction and severe hepatic steatosis due to a patent ductus venosus, Gastroenterology, vol.110, issue.6, 1996.
DOI : 10.1053/gast.1996.v110.pm8964424

H. Thomassin, M. Flavin, M. Espinás, and T. Grange, Glucocorticoidinduced DNA demethylation and gene memory during development, EMBO J, vol.20, 2001.

C. Decaens, M. Durand, B. Grosse, and D. Cassio, Which in vitro models could be best used to study hepatocyte polarity?, Biology of the Cell, vol.9, issue.7, pp.387-398, 2008.
DOI : 10.1042/BC20070127

URL : https://hal.archives-ouvertes.fr/inserm-00270868

S. Khetani and S. Bhatia, Microscale culture of human liver cells for drug development, Nature Biotechnology, vol.30, issue.1, pp.120-126, 2008.
DOI : 10.1038/nbt1361

Y. Kim and P. Rajagopalan, 3D Hepatic Cultures Simultaneously Maintain Primary Hepatocyte and Liver Sinusoidal Endothelial Cell Phenotypes, PLoS ONE, vol.275, issue.Pt 1, p.15456, 2010.
DOI : 10.1371/journal.pone.0015456.g006

URL : http://doi.org/10.1371/journal.pone.0015456

L. Boulter, O. Govaere, T. Bird, S. Radulescu, P. Ramachandran et al., Macrophage-derived Wnt opposes Notch signaling to specify hepatic progenitor cell fate in chronic liver disease, Nature Medicine, vol.169, issue.4, pp.572-579, 2011.
DOI : 10.1053/jhep.2001.29399

B. Uygun, A. Soto-gutierrez, H. Yagi, M. Izamis, M. Guzzardi et al., Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix, Nature Medicine, vol.391, issue.7, pp.814-820, 2010.
DOI : 10.1038/nm.2170

A. Soto-gutierrez, L. Zhang, C. Medberry, K. Fukumitsu, D. Faulk et al., A Whole-Organ Regenerative Medicine Approach for Liver Replacement, Tissue Engineering Part C: Methods, vol.17, issue.6, pp.677-686, 2011.
DOI : 10.1089/ten.tec.2010.0698

S. Espejel, G. Roll, K. Mclaughlin, A. Lee, J. Zhang et al., Induced pluripotent stem cell???derived hepatocytes have the functional and proliferative capabilities needed for liver regeneration in mice, Journal of Clinical Investigation, vol.120, issue.9, pp.3120-3126, 2010.
DOI : 10.1172/JCI43267DS1

J. Cai, Y. Zhao, Y. Liu, F. Ye, Z. Song et al., Directed differentiation of human embryonic stem cells into functional hepatic cells, Hepatology, vol.12, issue.5, pp.1229-1239, 2007.
DOI : 10.1002/hep.21582

D. Zhao, S. Chen, J. Cai, Y. Guo, Z. Song et al., Derivation and Characterization of Hepatic Progenitor Cells from Human Embryonic Stem Cells, PLoS ONE, vol.38, issue.7, p.6468, 2009.
DOI : 10.1371/journal.pone.0006468.s008

F. Li, P. Liu, C. Liu, D. Xiang, L. Deng et al., Hepatoblast-Like Progenitor Cells Derived From Embryonic Stem Cells Can Repopulate Livers of Mice, Gastroenterology, vol.139, issue.6, pp.2158-2169, 2010.
DOI : 10.1053/j.gastro.2010.08.042

K. Matsumoto, H. Yoshitomi, J. Rossant, and K. Zaret, Liver Organogenesis Promoted by Endothelial Cells Prior to Vascular Function, Science, vol.294, issue.5542, pp.559-563, 2001.
DOI : 10.1126/science.1063889

B. Ding, D. Nolan, J. Butler, D. James, A. Babazadeh et al., Inductive angiocrine signals from sinusoidal endothelium are required for liver regeneration, Nature, vol.22, issue.7321, pp.310-315, 2010.
DOI : 10.1038/nature09493

R. Samuel, L. Daheron, S. Liao, T. Vardam, W. Kamoun et al., Generation of functionally competent and durable engineered blood vessels from human induced pluripotent stem cells, Proceedings of the National Academy of Sciences, vol.110, issue.31, pp.12774-12779
DOI : 10.1073/pnas.1310675110

K. Asahina, B. Zhou, W. Pu, and H. Tsukamoto, Septum transversum-derived mesothelium gives rise to hepatic stellate cells and perivascular mesenchymal cells in developing mouse liver, Hepatology, vol.164, issue.3, pp.983-995, 2011.
DOI : 10.1002/hep.24119

S. Friedman, Hepatic Stellate Cells: Protean, Multifunctional, and Enigmatic Cells of the Liver, Physiological Reviews, vol.88, issue.1, pp.125-172, 2008.
DOI : 10.1152/physrev.00013.2007

L. Xu, A. Hui, E. Albanis, M. Arthur, O. Byrne et al., Human hepatic stellate cell lines, LX-1 and LX-2: new tools for analysis of hepatic fibrosis, Gut, vol.54, issue.1, pp.142-151, 2005.
DOI : 10.1136/gut.2004.042127

S. Senju, M. Haruta, K. Matsumura, Y. Matsunaga, S. Fukushima et al., Generation of dendritic cells and macrophages from human induced pluripotent stem cells aiming at cell therapy, Gene Therapy, vol.170, issue.9, pp.874-883, 2011.
DOI : 10.1038/nbt1310

M. Yanagimachi, A. Niwa, T. Tanaka, F. Honda-ozaki, S. Nishimoto et al., Robust and Highly-Efficient Differentiation of Functional Monocytic Cells from Human Pluripotent Stem Cells under Serum- and Feeder Cell-Free Conditions, PLoS ONE, vol.117, issue.4, pp.59243-102, 2011.
DOI : 10.1371/journal.pone.0059243.s007

F. Parviz, C. Matullo, W. Garrison, L. Savatski, J. Adamson et al., Hepatocyte nuclear factor 4?? controls the development of a hepatic epithelium and liver morphogenesis, Nature Genetics, vol.34, issue.3, pp.292-296, 2003.
DOI : 10.1038/ng1175

S. Han, N. Dziedzic, P. Gadue, and G. Keller, An Endothelial Cell Niche Induces Hepatic Specification Through Dual Repression of Wnt and Notch Signaling, STEM CELLS, vol.48, issue.2, pp.217-228, 2011.
DOI : 10.1002/stem.576

O. Goldman, S. Han, M. Sourrisseau, N. Dziedzic, W. Hamou et al., KDR Identifies a Conserved Human and Murine Hepatic Progenitor and Instructs Early Liver Development, Cell Stem Cell, vol.12, issue.6, pp.748-760, 2013.
DOI : 10.1016/j.stem.2013.04.026

S. Cui, M. Leyva-vega, E. Tsai, S. Eauclaire, J. Glessner et al., Evidence From Human and Zebrafish That GPC1 Is a Biliary Atresia Susceptibility Gene, Gastroenterology, vol.144, issue.5, pp.1107-1115, 2013.
DOI : 10.1053/j.gastro.2013.01.022

R. Siller, S. Greenhough, I. Park, and G. Sullivan, Modelling Human Disease with Pluripotent Stem Cells, Current Gene Therapy, vol.13, issue.2, pp.99-110, 2013.
DOI : 10.2174/1566523211313020004

M. Cayo, J. Cai, A. Delaforest, F. Noto, M. Nagaoka et al., JD induced pluripotent stem cell-derived hepatocytes faithfully recapitulate the pathophysiology of familial hypercholesterolemia, Hepatology, vol.29, issue.6, pp.2163-2171, 2009.
DOI : 10.1002/hep.25871

E. Steinmann and T. Pietschmann, Cell Culture Systems for Hepatitis C Virus, Curr Top Microbiol Immunol, vol.369, pp.17-48, 2013.
DOI : 10.1007/978-3-642-27340-7_2

G. Vieyres and T. Pietschmann, Entry and replication of recombinant hepatitis C viruses in cell culture, Methods, vol.59, issue.2, pp.233-248, 2013.
DOI : 10.1016/j.ymeth.2012.09.005

K. Banaudha, J. Orenstein, T. Korolnek, S. Laurent, G. Wakita et al., Primary hepatocyte culture supports hepatitis C virus replication: A model for infection-associated hepatocarcinogenesis, Hepatology, vol.89, issue.6, pp.1922-1932, 2010.
DOI : 10.1002/hep.23616

S. Marukian, L. Andrus, T. Sheahan, C. Jones, E. Charles et al., Hepatitis C virus induces interferon-?? and interferon-stimulated genes in primary liver cultures, Hepatology, vol.137, issue.Suppl 1, 2011.
DOI : 10.1002/hep.24580

S. Molina, V. Castet, L. Pichard-garcia, C. Wychowski, E. Meurs et al., Serum-Derived Hepatitis C Virus Infection of Primary Human Hepatocytes Is Tetraspanin CD81 Dependent, Journal of Virology, vol.82, issue.1, pp.569-574, 2008.
DOI : 10.1128/JVI.01443-07

URL : https://hal.archives-ouvertes.fr/inserm-00374410

H. Park, E. Serti, O. Eke, B. Muchmore, L. Prokunina-olsson et al., IL-29 is the dominant type III interferon produced by hepatocytes during acute hepatitis C virus infection, Hepatology, vol.139, issue.6, pp.2060-2070, 2012.
DOI : 10.1002/hep.25897

A. Ploss, S. Khetani, C. Jones, A. Syder, K. Trehan et al., Persistent hepatitis C virus infection in microscale primary human hepatocyte cultures, Proceedings of the National Academy of Sciences, vol.107, issue.7, pp.3141-3145, 2010.
DOI : 10.1073/pnas.0915130107

P. Podevin, A. Carpentier, V. Pène, L. Aoudjehane, M. Carrière et al., Production of Infectious Hepatitis C Virus in Primary Cultures of Human Adult Hepatocytes, Gastroenterology, vol.139, issue.4, pp.1355-1364, 2010.
DOI : 10.1053/j.gastro.2010.06.058

E. Thomas, V. Gonzalez, Q. Li, A. Modi, W. Chen et al., HCV Infection Induces a Unique Hepatic Innate Immune Response Associated With Robust Production of Type III Interferons, Gastroenterology, vol.142, issue.4, pp.978-988, 2012.
DOI : 10.1053/j.gastro.2011.12.055

J. Blaising, P. Lévy, C. Gondeau, C. Phelip, M. Varbanov et al., Silibinin inhibits hepatitis C virus entry into hepatocytes by hindering clathrin-dependent trafficking, Cellular Microbiology, vol.107, pp.1866-1882, 2013.
DOI : 10.1111/cmi.12155

URL : https://hal.archives-ouvertes.fr/hal-01494096

C. Fournier, C. Sureau, J. Coste, J. Ducos, G. Pageaux et al., In vitro infection of adult normal human hepatocytes in primary culture by hepatitis C virus., Journal of General Virology, vol.79, issue.10, pp.792367-2374, 1998.
DOI : 10.1099/0022-1317-79-10-2367

S. Molina, V. Castet, C. Fournier-wirth, L. Pichard-garcia, R. Avner et al., The low-density lipoprotein receptor plays a role in the infection of primary human hepatocytes by hepatitis C virus, Journal of Hepatology, vol.46, issue.3, pp.411-419, 2007.
DOI : 10.1016/j.jhep.2006.09.024

URL : https://hal.archives-ouvertes.fr/inserm-00374413

T. Yoshida, K. Takayama, M. Kondoh, F. Sakurai, H. Tani et al., Use of human hepatocyte-like cells derived from induced pluripotent stem cells as a model for hepatocytes in hepatitis C virus infection, Biochemical and Biophysical Research Communications, vol.416, issue.1-2, pp.119-124, 2011.
DOI : 10.1016/j.bbrc.2011.11.007

P. Roelandt, S. Obeid, J. Paeshuyse, J. Vanhove, V. Lommel et al., Human pluripotent stem cell-derived hepatocytes support complete replication of hepatitis C virus, Journal of Hepatology, vol.57, issue.2, pp.246-251, 2012.
DOI : 10.1016/j.jhep.2012.03.030

X. Wu, J. Robotham, E. Lee, S. Dalton, N. Kneteman et al., Productive Hepatitis C Virus Infection of Stem Cell-Derived Hepatocytes Reveals a Critical Transition to Viral Permissiveness during Differentiation, PLoS Pathogens, vol.78, issue.Pt 10, p.1002617, 2012.
DOI : 10.1371/journal.ppat.1002617.s003

K. Si-tayeb, J. Duclos-vallée, and M. Petit, Hepatocyte-like cells differentiated from human induced pluripotent stem cells (iHLCs) are permissive to hepatitis C virus (HCV) infection: HCV study gets personal, Journal of Hepatology, vol.57, issue.3, pp.689-691, 2012.
DOI : 10.1016/j.jhep.2012.04.012

X. Zhou, G. Sullivan, P. Sun, and I. Park, Humanized murine model for HBV and HCV using human induced pluripotent stem cells, Archives of Pharmacal Research, vol.120, issue.Suppl2, pp.261-269, 2012.
DOI : 10.1007/s12272-012-0206-8

C. Klotz, T. Aebischer, and F. Seeber, Stem cell-derived cell cultures and organoids for protozoan parasite propagation and studying host???parasite interaction, International Journal of Medical Microbiology, vol.302, issue.4-5, pp.203-209, 2012.
DOI : 10.1016/j.ijmm.2012.07.010

URL : http://edoc.rki.de/oa/articles/re3lY3HVu6LhA/PDF/26VdSX15AyyOU.pdf

R. Kia, R. Sison, J. Heslop, N. Kitteringham, N. Hanley et al., Stem cell-derived hepatocytes as a predictive model for drug-induced liver injury: are we there yet?, British Journal of Clinical Pharmacology, vol.13, issue.4, pp.885-896, 2013.
DOI : 10.1111/j.1365-2125.2012.04360.x

O. Videau, M. Delaforge, M. Levi, E. Thévenot, O. Gal et al., Biochemical and analytical development of the CIME cocktail for drug fate assessment in humans, Rapid Communications in Mass Spectrometry, vol.1215, issue.16, pp.2407-2419, 2010.
DOI : 10.1002/rcm.4641

O. Schaefer, S. Ohtsuki, H. Kawakami, T. Inoue, S. Liehner et al., Absolute Quantification and Differential Expression of Drug Transporters, Cytochrome P450 Enzymes, and UDP-Glucuronosyltransferases in Cultured Primary Human Hepatocytes, Drug Metabolism and Disposition, vol.40, issue.1, pp.93-103, 2012.
DOI : 10.1124/dmd.111.042275

H. Azuma, N. Paulk, A. Ranade, C. Dorrell, M. Al-dhalimy et al., Robust expansion of human hepatocytes in Fah???/???/Rag2???/???/Il2rg???/??? mice, Nature Biotechnology, vol.43, issue.8, pp.903-910, 2007.
DOI : 10.1038/nbt1326

K. Bissig, S. Wieland, P. Tran, M. Isogawa, T. Le et al., Human liver chimeric mice provide a model for hepatitis B and C virus infection and treatment, Journal of Clinical Investigation, vol.120, issue.3, pp.924-930, 2010.
DOI : 10.1172/JCI40094DS1

T. Takebe, K. Sekine, Y. Suzuki, M. Enomura, S. Tanaka et al., Self-Organization of Human Hepatic Organoid by Recapitulating Organogenesis In Vitro, Transplantation Proceedings, vol.44, issue.4, pp.1018-1020, 2012.
DOI : 10.1016/j.transproceed.2012.02.007

T. Takebe, K. Sekine, M. Enomura, H. Koike, M. Kimura et al., Vascularized and functional human liver from an iPSCderived organ bud transplant, Nature, 2013.

J. Bao, Y. Shi, H. Sun, X. Yin, R. Yang et al., Construction of a Portal Implantable Functional Tissue-Engineered Liver Using Perfusion-Decellularized Matrix and Hepatocytes in Rats, Cell Transplantation, vol.20, issue.5, pp.753-766, 2011.
DOI : 10.3727/096368910X536572

P. Zhou, N. Lessa, D. Estrada, E. Severson, S. Lingala et al., Decellularized liver matrix as a carrier for the transplantation of human fetal and primary hepatocytes in mice, Liver Transplantation, vol.129, issue.4, pp.418-427, 2011.
DOI : 10.1002/lt.22270

H. Yagi, K. Fukumitsu, K. Fukuda, M. Kitago, M. Shinoda et al., Human-Scale Whole-Organ Bioengineering for Liver Transplantation: A Regenerative Medicine Approach, Cell Transplantation, vol.22, issue.2, pp.231-242, 2013.
DOI : 10.3727/096368912X654939