L. Wu and R. Wang, Carbon Monoxide: Endogenous Production, Physiological Functions, and Pharmacological Applications, Pharmacological Reviews, vol.57, issue.4, pp.585-630, 2005.
DOI : 10.1124/pr.57.4.3

M. Bilban, A. Haschemi, B. Wegiel, B. Y. Chin, O. Wagner et al., Heme oxygenase and carbon monoxide initiate homeostatic signaling, Journal of Molecular Medicine, vol.20, issue.5, pp.86-267, 2008.
DOI : 10.1007/s00109-007-0276-0

R. Motterlini and L. E. Otterbein, The therapeutic potential of carbon monoxide, Nature Reviews Drug Discovery, vol.51, issue.9
DOI : 10.1038/nrd3228

S. W. Ryter, J. Alam, and A. M. Choi, Heme Oxygenase-1/Carbon Monoxide: From Basic Science to Therapeutic Applications, Physiological Reviews, vol.86, issue.2, pp.583-650, 2006.
DOI : 10.1152/physrev.00011.2005

R. Motterlini, J. E. Clark, R. Foresti, P. Sarathchandra, B. E. Mann et al., Carbon Monoxide-Releasing Molecules: Characterization of Biochemical and Vascular Activities, Circulation Research, vol.90, issue.2
DOI : 10.1161/hh0202.104530

L. Lo-iacono, J. Boczkowski, R. Zini, I. Salouage, A. Berdeaux et al., A carbon monoxide-releasing molecule (CORM-3) uncouples mitochondrial respiration and modulates the production of reactive oxygen species, Free Radic, Biol. Med, pp.50-1556, 2011.

F. N. Obame, R. Zini, R. Souktani, A. Berdeaux, and D. Morin, Peripheral Benzodiazepine Receptor-Induced Myocardial Protection is Mediated by Inhibition of Mitochondrial Membrane Permeabilization, Journal of Pharmacology and Experimental Therapeutics, vol.323, issue.1, pp.323-336, 2007.
DOI : 10.1124/jpet.107.124255

. Morin, 4-dichlorophenyl)-4(1-methyl-1H-indol-3-yl)-1H-pyrrole-2,5-dione], via inhibition of the mitochondrial permeability transition pore, J. Pharmacol. Exp. Ther, issue.2, pp.216763-216766, 2008.

A. W. Leung, P. Varanyuwatana, and A. P. Halestrap, The Mitochondrial Phosphate Carrier Interacts with Cyclophilin D and May Play a Key Role in the Permeability Transition, Journal of Biological Chemistry, vol.283, issue.39
DOI : 10.1074/jbc.M805235200

A. A. Baykov, O. A. Evtushenko, and S. M. Avaeva, A malachite green procedure for orthophosphate determination and its use in alkaline phosphatase-based enzyme immunoassay, Analytical Biochemistry, vol.171, issue.2, pp.171-266, 1988.
DOI : 10.1016/0003-2697(88)90484-8

P. Varanyuwatana and A. P. Halestrap, The roles of phosphate and the phosphate carrier in the mitochondrial permeability transition pore, Mitochondrion, vol.12, issue.1, pp.120-125, 2012.
DOI : 10.1016/j.mito.2011.04.006

L. K. Seidlmayer, M. R. Gomez-garcia, L. A. Blatter, E. Pavlov, and E. N. Dedkova, Inorganic polyphosphate is a potent activator of the mitochondrial permeability transition pore in cardiac myocytes, The Journal of General Physiology, vol.268, issue.5, pp.139-321, 2012.
DOI : 10.1371/journal.pone.0005404

C. Indiveri, G. Prezioso, T. Dierks, R. Krämer, and F. Palmieri, Kinetic characterization of the reconstituted dicarboxylate carrier from mitochondria: a four-binding-site sequential transport system, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1143, issue.3, pp.310-318, 1993.
DOI : 10.1016/0005-2728(93)90202-Q

F. Palmieri, The mitochondrial transporter family (SLC25): physiological and pathological implications, Pfl???gers Archiv European Journal of Physiology, vol.447, issue.5, pp.689-709, 2004.
DOI : 10.1007/s00424-003-1099-7

. Walker, The sequence, bacterial expression, and functional reconstitution of the rat mitochondrial dicarboxylate transporter cloned via distant homologs in yeast and Caenorhabditis elegans, J. Biol. Chem, vol.273, pp.24754-24759, 1998.

P. Costantini, V. Petronilli, R. Colonna, and P. Bernardi, On the effects of paraquat on isolated mitochondria. Evidence that paraquat causes opening of the cyclosporin A-sensitive permeability transition pore synergistically with nitric oxide, Toxicology, vol.99, issue.1-2, pp.77-88, 1995.
DOI : 10.1016/0300-483X(94)02997-9

C. A. Piantadosi, Biological Chemistry of Carbon Monoxide, Antioxidants & Redox Signaling, vol.4, issue.2, pp.259-270, 2002.
DOI : 10.1089/152308602753666316

R. Foresti, M. G. Bani-hani, and R. Motterlini, Use of carbon monoxide as a??therapeutic agent: promises and challenges, Intensive Care Medicine, vol.38, issue.4, pp.649-658, 2008.
DOI : 10.1007/s00134-008-1011-1

J. Wang, J. Karpus, B. S. Zhao, Z. Luo, P. R. Chen et al., He, A selective fluorescent probe for carbon monoxide imaging in living cells, Angew. Chem. Int. Ed Engl, pp.51-9652, 2012.

B. W. Michel, A. R. Lippert, and C. J. Chang, A Reaction-Based Fluorescent Probe for Selective Imaging of Carbon Monoxide in Living Cells Using a Palladium-Mediated Carbonylation, Journal of the American Chemical Society, vol.134, issue.38
DOI : 10.1021/ja307017b

A. J. Kowaltowski, R. F. Castilho, M. T. Grijalba, E. J. Bechara, and A. E. Vercesi, Effect of inorganic phosphate concentration on the nature of inner mitochondrial membrane alterations mediated by Ca2+ ions. A proposed model for phosphate-stimulated lipid peroxidation, J

P. L. Vághy, M. A. Matlib, and A. Schwartz, Phosphate induced swelling, inhibition and partial uncoupling of oxidative phosphorylation in heart mitochondria in the absence of