P. Uchil and W. Mothes, HIV Entry Revisited, Cell, vol.137, issue.3, pp.402-406, 2009.
DOI : 10.1016/j.cell.2009.04.033

URL : http://doi.org/10.1016/j.cell.2009.04.033

J. Brenchley, Microbial translocation is a cause of systemic immune activation in chronic HIV infection, Nature Medicine, vol.174, issue.12, pp.1365-71, 2006.
DOI : 10.1038/nm1511

A. Boasso and G. Shearer, Chronic innate immune activation as a cause of HIV-1 immunopathogenesis, Clinical Immunology, vol.126, issue.3, pp.235-277, 2008.
DOI : 10.1016/j.clim.2007.08.015

K. Mir, Simian Immunodeficiency Virus-Induced Alterations in Monocyte Production of Tumor Necrosis Factor Alpha Contribute to Reduced Immune Activation in Sooty Mangabeys, Journal of Virology, vol.86, issue.14, pp.7605-7620
DOI : 10.1128/JVI.06813-11

M. Clerici, Role of interleukin-10 in T helper cell dysfunction in asymptomatic individuals infected with the human immunodeficiency virus., Journal of Clinical Investigation, vol.93, issue.2, pp.768-75, 1994.
DOI : 10.1172/JCI117031

A. Lepelley, Innate Sensing of HIV-Infected Cells, PLoS Pathogens, vol.178, issue.2, p.1001284, 2011.
DOI : 10.1371/journal.ppat.1001284.s002

URL : https://hal.archives-ouvertes.fr/pasteur-00590930

B. Schmidt, HIV-infected cells are major inducers of plasmacytoid dendritic cell interferon production, maturation, and migration, Virology, vol.343, issue.2, pp.256-66, 2005.
DOI : 10.1016/j.virol.2005.09.059

K. Breckpot, HIV-1 Lentiviral Vector Immunogenicity Is Mediated by Toll-Like Receptor 3 (TLR3) and TLR7, Journal of Virology, vol.84, issue.11, pp.5627-5663, 2010.
DOI : 10.1128/JVI.00014-10

K. Ishii, Host Innate Immune Receptors and Beyond: Making Sense of Microbial Infections, Cell Host & Microbe, vol.3, issue.6, pp.352-63, 2008.
DOI : 10.1016/j.chom.2008.05.003

K. Leghmari, Y. Bennasser, and E. Bahraoui, HIV-1 Tat protein induces IL-10 production in monocytes by classical and alternative NF-??B pathways, European Journal of Cell Biology, vol.87, issue.12, pp.947-62, 2008.
DOI : 10.1016/j.ejcb.2008.06.005

A. Badou, Tat Protein of Human Immunodeficiency Virus Type 1 Induces Interleukin-10 in Human Peripheral Blood Monocytes: Implication of Protein Kinase C-Dependent Pathway, Journal of Virology, vol.74, issue.22, pp.7410551-62, 2000.
DOI : 10.1128/JVI.74.22.10551-10562.2000

Y. Bennasser and E. Bahraoui, HIV-1 Tat protein induces interleukin-10 in human peripheral blood monocytes: involvement of protein kinase C-betaII and -delta, The FASEB Journal, vol.16, issue.6, pp.546-54, 2002.
DOI : 10.1096/fj.01-0775com

X. Contreras, Y. Bennasser, and E. Bahraoui, IL-10 production induced by HIV-1 Tat stimulation of human monocytes is dependent on the activation of PKC ? and ? isozymes, Microbes and Infection, vol.6, issue.13, pp.1182-90, 2004.
DOI : 10.1016/j.micinf.2004.06.008

M. Lotz, I. Clark-lewis, and V. Ganu, HIV-1 transactivator protein Tat induces proliferation and TGF beta expression in human articular chondrocytes, The Journal of Cell Biology, vol.124, issue.3, pp.365-71, 1994.
DOI : 10.1083/jcb.124.3.365

G. Zauli, Tat protein stimulates production of transforming growth factor-beta 1 by marrow macrophages: a potential mechanism for human immunodeficiency virus-1-induced hematopoietic suppression, Blood, vol.80, issue.12, pp.3036-3079, 1992.

A. Frankel, Activation of HIV transcription by Tat, Current Opinion in Genetics & Development, vol.2, issue.2, pp.293-301, 1992.
DOI : 10.1016/S0959-437X(05)80287-4

S. Feng and E. Holland, HIV-1 tat trans-activation requires the loop sequence within tar, Nature, vol.334, issue.6178, pp.165-172, 1988.
DOI : 10.1038/334165a0

G. Goldstein, HIV???1 Tat protein as a potential AIDS vaccine, Nature Medicine, vol.63, issue.9, pp.960-964, 1996.
DOI : 10.1084/jem.175.2.331

M. Westendorp, Sensitization of T cells to CD95-mediated apoptosis by HIV-1 Tat and gp120, Nature, vol.375, issue.6531, pp.497-500, 1995.
DOI : 10.1038/375497a0

H. Xiao, Selective CXCR4 antagonism by Tat: Implications for in vivo expansion of coreceptor use by HIV-1, Proceedings of the National Academy of Sciences, vol.97, issue.21, pp.9711466-71, 2000.
DOI : 10.1073/pnas.97.21.11466

C. Urbinati, HIV-1 Tat and heparan sulfate proteoglycan interaction: a novel mechanism of lymphocyte adhesion and migration across the endothelium, Blood, vol.114, issue.15, pp.3335-3377, 2009.
DOI : 10.1182/blood-2009-01-198945

B. Ensoli, Release, uptake, and effects of extracellular human immunodeficiency virus type 1 Tat protein on cell growth and viral transactivation, J Virol, vol.67, issue.1, pp.277-87, 1993.

T. Howcroft, Repression of MHC class I gene promoter activity by two-exon Tat of HIV, Science, vol.260, issue.5112, pp.1320-1322, 1993.
DOI : 10.1126/science.8493575

T. Kim, HIV-1 Tat-Mediated Apoptosis in Human Brain Microvascular Endothelial Cells, The Journal of Immunology, vol.170, issue.5, pp.2629-2666, 2003.
DOI : 10.4049/jimmunol.170.5.2629

J. Sabatier, Evidence for neurotoxic activity of Tat from human immunodeficiency virus type 1, J Virol, vol.65, issue.2, pp.961-968, 1991.
DOI : 10.1007/978-94-011-2264-1_282

C. Li, Induction of apoptosis in uninfected lymphocytes by HIV-1 Tat protein, Science, vol.268, issue.5209, pp.429-460, 1995.
DOI : 10.1126/science.7716549

R. Canani, Inhibitory effect of HIV-1 Tat protein on the sodium-D-glucose symporter of human intestinal epithelial cells, AIDS, vol.20, issue.1, pp.5-10, 2006.
DOI : 10.1097/01.aids.0000198088.85572.68

W. Gutheil, Human immunodeficiency virus 1 Tat binds to dipeptidyl aminopeptidase IV (CD26): a possible mechanism for Tat's immunosuppressive activity., Proceedings of the National Academy of Sciences, vol.91, issue.14, pp.916594-916602, 1994.
DOI : 10.1073/pnas.91.14.6594

X. Contreras, Human immunodeficiency virus type 1 Tat protein induces an intracellular calcium increase in human monocytes that requires DHP receptors: involvement in TNF-alpha production, Virology, vol.332, issue.1, pp.316-344, 2005.

A. Rubartelli, HIV-1 Tat: a polypeptide for all seasons, Immunology Today, vol.19, issue.12, pp.543-548, 1998.
DOI : 10.1016/S0167-5699(98)01351-6

A. Albini, HIV-tat protein is a heparin-binding angiogenic growth factor, Oncogene, vol.12, issue.2, pp.289-97, 1996.

S. Coats, MD-2 Mediates the Ability of Tetra-Acylated and Penta-Acylated Lipopolysaccharides to Antagonize Escherichia coli Lipopolysaccharide at the TLR4 Signaling Complex, The Journal of Immunology, vol.175, issue.7, pp.4490-4498, 2005.
DOI : 10.4049/jimmunol.175.7.4490

C. Lee, A. Avalos, and H. Ploegh, Accessory molecules for Toll-like receptors and their function, Nature Reviews Immunology, vol.268, issue.123, pp.168-79
DOI : 10.1038/nri3151

S. Debaisieux, The Ins and Outs of HIV-1 Tat, Traffic, vol.7, issue.3, pp.355-63
DOI : 10.1111/j.1600-0854.2011.01286.x

URL : https://hal.archives-ouvertes.fr/hal-00675738

H. Shin, Kinetics of binding of LPS to recombinant CD14, TLR4, and MD-2 proteins, Mol Cells, vol.24, issue.1, pp.119-143, 2007.

T. Kirkland, Analysis of lipopolysaccharide binding by CD14, J Biol Chem, vol.268, issue.33, pp.24818-24841, 1993.

C. Thomas, Evidence of a trimolecular complex involving LPS, LPS binding protein and soluble CD14 as an effector of LPS response, FEBS Letters, vol.66, issue.2, pp.184-192, 2002.
DOI : 10.1016/S0014-5793(02)03499-3

Y. Nagai, Essential role of MD-2 in LPS responsiveness and TLR4 distribution, Nature Immunology, vol.3, issue.7, pp.667-72, 2002.
DOI : 10.1038/ni809

M. Murawski, Respiratory Syncytial Virus Activates Innate Immunity through Toll-Like Receptor 2, Journal of Virology, vol.83, issue.3, pp.1492-500, 2009.
DOI : 10.1128/JVI.00671-08

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2620898

L. Haynes, Involvement of Toll-Like Receptor 4 in Innate Immunity to Respiratory Syncytial Virus, Journal of Virology, vol.75, issue.22, pp.7510730-7510737, 2001.
DOI : 10.1128/JVI.75.22.10730-10737.2001

J. Rassa, Murine retroviruses activate B cells via interaction with toll-like receptor 4, Proceedings of the National Academy of Sciences, vol.99, issue.4, pp.2281-2287, 2002.
DOI : 10.1073/pnas.042355399

K. Boehme and T. Compton, Innate Sensing of Viruses by Toll-Like Receptors, Journal of Virology, vol.78, issue.15, pp.7867-73, 2004.
DOI : 10.1128/JVI.78.15.7867-7873.2004

E. Said, Programmed death-1???induced interleukin-10 production by monocytes impairs CD4+ T cell activation during HIV infection, Nature Medicine, vol.372, issue.10, pp.452-459, 2010.
DOI : 10.1038/nm.2106

D. Favre, Tryptophan Catabolism by Indoleamine 2,3-Dioxygenase 1 Alters the Balance of TH17 to Regulatory T Cells in HIV Disease, Science Translational Medicine, vol.2, issue.32, pp.32-36, 2010.
DOI : 10.1126/scitranslmed.3000632

D. Weissman, G. Poli, and A. Fauci, IL-10 Synergizes with Multiple Cytokines in Enhancing HIV Production in Cells of Monocytic Lineage, Journal of Acquired Immune Deficiency Syndromes & Human Retrovirology, vol.9, issue.5, pp.442-451, 1995.
DOI : 10.1097/00042560-199509050-00002

A. Finnegan, IL-10 cooperates with TNF-alpha to activate HIV-1 from latently and acutely infected cells of monocyte/macrophage lineage, J Immunol, vol.156, issue.2, pp.841-51, 1996.

T. Lysakova-devine, Viral Inhibitory Peptide of TLR4, a Peptide Derived from Vaccinia Protein A46, Specifically Inhibits TLR4 by Directly Targeting MyD88 Adaptor-Like and TRIF-Related Adaptor Molecule, The Journal of Immunology, vol.185, issue.7
DOI : 10.4049/jimmunol.1002013

T. Abe, Hepatitis C Virus Nonstructural Protein 5A Modulates the Toll-Like Receptor-MyD88-Dependent Signaling Pathway in Macrophage Cell Lines, Journal of Virology, vol.81, issue.17, pp.818953-66, 2007.
DOI : 10.1128/JVI.00649-07

F. Grela, The TLR7 Agonist R848 Alleviates Allergic Inflammation by Targeting Invariant NKT Cells To Produce IFN-??, The Journal of Immunology, vol.186, issue.1, pp.284-90, 2011.
DOI : 10.4049/jimmunol.1001348