O. Warburg, On the Origin of Cancer Cells, Science, vol.123, issue.3191, pp.309-323, 1956.
DOI : 10.1126/science.123.3191.309

P. Ward, C. Thompson, and . Metabolicreprogramming, Metabolic Reprogramming: A Cancer Hallmark Even Warburg Did Not Anticipate, Cancer Cell, vol.21, issue.3, pp.297-308, 2012.
DOI : 10.1016/j.ccr.2012.02.014

C. Dang, . Links-betweenmetabolism, and . Cancer, Links between metabolism and cancer, Genes & Development, vol.26, issue.9, pp.877-90, 2012.
DOI : 10.1101/gad.189365.112

M. Vander-heiden, L. Cantley, and C. Thompson, Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation, Science, vol.324, issue.5930, pp.1029-1062, 2009.
DOI : 10.1126/science.1160809

A. Wolf, S. Agnihotri, and J. Micallef, Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiforme, The Journal of Experimental Medicine, vol.124, issue.2, pp.313-339, 2011.
DOI : 10.1126/science.1170944

K. Gottlob, N. Majewski, and S. Kennedy, Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase, Genes & Development, vol.15, issue.11, pp.1406-1424, 2001.
DOI : 10.1101/gad.889901

J. Chesney, R. Mitchell, and F. Benigni, An induciblegeneproduct for

H. Christofk, V. Heiden, M. Harris, and M. , The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth, Nature, vol.3, issue.7184, pp.230-233, 2008.
DOI : 10.1038/nature06734

C. David, M. Chen, and M. Assanah, HnRNP proteins controlled by c-Myc deregulate pyruvate kinase mRNA splicing in cancer, Nature, vol.36, issue.7279, pp.364-372, 2010.
DOI : 10.1038/nature08697

Z. Wang, H. Jeon, and F. Rigo, Manipulation of PK-M mutually exclusive alternative splicing by antisense oligonucleotides, Open Biology, vol.82, issue.4, p.120133, 2012.
DOI : 10.1016/j.ajhg.2008.01.014

R. Elstrom, D. Bauer, and M. Buzzai, Akt Stimulates Aerobic Glycolysis in Cancer Cells, Cancer Research, vol.64, issue.11, pp.3892-3901, 2004.
DOI : 10.1158/0008-5472.CAN-03-2904

R. Robey, N. Hay, and . Akt-the, Is Akt the ???Warburg kinase???????Akt-energy metabolism interactions and oncogenesis, Seminars in Cancer Biology, vol.19, issue.1, pp.25-31, 2009.
DOI : 10.1016/j.semcancer.2008.11.010

J. Wofford, H. Wieman, and S. Jacobs, IL-7 promotes Glut1 trafficking and glucose uptake via STAT5-mediated activation of Akt to support T-cell survival, Blood, vol.111, issue.4, pp.2101-2112, 2008.
DOI : 10.1182/blood-2007-06-096297

F. Chiaradonna, E. Sacco, and R. Manzoni, Ras-dependent carbon metabolism and transformation in mouse fibroblasts, Oncogene, vol.12, issue.39, pp.5391-404, 2006.
DOI : 10.1038/sj.onc.1209528

J. Yun, C. Rago, and I. Cheong, Glucose Deprivation Contributes to the Development of KRAS Pathway Mutations in Tumor Cells, Science, vol.325, issue.5947, pp.1555-1564, 2009.
DOI : 10.1126/science.1174229

B. Faubert, G. Boily, and S. Izreig, AMPK is a negativeregulator of the Warburg effect andsuppressestumorgrowth in vivo, CellMetab, vol.17, pp.113-137, 2013.

C. Brahimi-horn and J. Pouyssegur, The role of the hypoxia-inducible factor in tumor metabolismgrowth and invasion, Bull Cancer, vol.93, pp.73-80, 2006.

H. Lu, R. Forbes, A. Verma, and . Hypoxia, inducible factor 1 activation by aerobic glycolysisimplicates the Warburg effect in carcinogenesis, J BiolChem, vol.277, pp.23111-23116, 2002.

C. Dang, A. Le, P. Gao, and . Myc, MYC-Induced Cancer Cell Energy Metabolism and Therapeutic Opportunities, Clinical Cancer Research, vol.15, issue.21, pp.6479-83, 2009.
DOI : 10.1158/1078-0432.CCR-09-0889

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2783410

M. Yuneva, N. Zamboni, and P. Oefner, Deficiency in glutamine but not glucose induces MYC-dependent apoptosis in human cells, The Journal of Cell Biology, vol.43, issue.1, pp.93-105, 2007.
DOI : 10.1016/j.bbrc.2003.11.136

L. Shen, X. Sun, and Z. Fu, The Fundamental Role of the p53 Pathway in Tumor Metabolism and Its Implication in Tumor Therapy, Clinical Cancer Research, vol.18, issue.6, pp.1561-1568, 2012.
DOI : 10.1158/1078-0432.CCR-11-3040

K. Bensaad, A. Tsuruta, and M. Selak, TIGAR, a p53-Inducible Regulator of Glycolysis and Apoptosis, Cell, vol.126, issue.1, pp.107-127, 2006.
DOI : 10.1016/j.cell.2006.05.036

F. Schwartzenberg-bar-yoseph, M. Armoni, and K. , The Tumor Suppressor p53 Down-Regulates Glucose Transporters GLUT1 and GLUT4 Gene Expression, Cancer Research, vol.64, issue.7, pp.2627-2660, 2004.
DOI : 10.1158/0008-5472.CAN-03-0846

K. Kawauchi, K. Araki, and K. Tobiume, p53 regulates glucose metabolism through an IKK-NF-??B pathway and inhibits cell transformation, Nature Cell Biology, vol.35, issue.5, pp.611-619, 2008.
DOI : 10.1016/S1074-7613(00)00053-4

S. Matoba, J. Kang, and W. Patino, p53 Regulates Mitochondrial Respiration, Science, vol.312, issue.5780, pp.1650-1653, 2006.
DOI : 10.1126/science.1126863

T. Contractor and H. , p53 Negatively Regulates Transcription of the Pyruvate Dehydrogenase Kinase Pdk2, Cancer Research, vol.72, issue.2, pp.560-567, 2012.
DOI : 10.1158/0008-5472.CAN-11-1215

S. Lagarrigue, E. Blanchet, and J. Annicotte, Le double jeu des r??gulateurs du cycle cellulaire, m??decine/sciences, vol.27, issue.5, pp.508-521, 2011.
DOI : 10.1051/medsci/2011275016

H. Chen, S. Tsai, and L. G. , Emerging roles of E2Fs in cancer: an exit from cell cycle control, Nature Reviews Cancer, vol.94, issue.11, pp.785-97, 2009.
DOI : 10.1038/nrc2696

M. Hsieh, D. Das, and N. Sambandam, Regulation of the PDK4 Isozyme by the Rb-E2F1 Complex, Journal of Biological Chemistry, vol.283, issue.41, pp.27410-27417, 2008.
DOI : 10.1074/jbc.M802418200

Q. Cai, T. Lin, and S. Kamarajugadda, Regulation of glycolysis and the Warburg effect byestrogen-relatedreceptors, Oncogene, vol.2012, pp.1-8

P. Gao, L. Sun, and X. He, MicroRNAs and the Warburg Effect: New Players in an Old Arena, Current Gene Therapy, vol.12, issue.4, pp.285-91, 2012.
DOI : 10.2174/156652312802083620

L. Eichner, M. Perry, and C. Dufour, miR-378(*) mediatesmetabolic shift in breast cancercells via the PGC-1beta/ERRgammatranscriptionalpathway, CellMetab, vol.12, pp.352-61, 2010.

R. Gatenby, R. Gillies, and . Why, Why do cancers have high aerobic glycolysis?, Nature Reviews Cancer, vol.62, issue.11, pp.891-900, 2004.
DOI : 10.1038/nrc1478

C. Terret and F. Solari, L???hom??ostasie m??tabolique au c??ur du vieillissement, m??decine/sciences, vol.28, issue.3, pp.311-316, 2012.
DOI : 10.1051/medsci/2012283020

M. Foretz and B. Viollet, M??canisme d???inhibition de la production h??patique de glucose par la metformine, m??decine/sciences, vol.26, issue.6-7, pp.663-669, 2010.
DOI : 10.1051/medsci/2010266-7663

X. Tong, F. Zhao, and C. Thompson, The molecular determinants of de novo nucleotide biosynthesis in cancer cells, Current Opinion in Genetics & Development, vol.19, issue.1, pp.32-39, 2009.
DOI : 10.1016/j.gde.2009.01.002

W. Yang, Y. Xia, and H. Ji, Nuclear PKM2 regulates beta-catenintransactivationupon EGFR activation, Nature, vol.480, pp.118-140, 2011.

C. Sebastian, B. Zwaans, and D. Silberman, The Histone Deacetylase SIRT6 Is a Tumor Suppressor that Controls Cancer Metabolism, Cell, vol.151, issue.6, pp.1185-99, 2012.
DOI : 10.1016/j.cell.2012.10.047