A. Jones, M. Gumbleton, and R. Duncan, Understanding endocytic pathways and intracellular trafficking: a prerequisite for effective design of advanced drug delivery systems. Advanced drug delivery reviews, p.551353, 2003.

S. Marion, C. Wilhelm, H. Voigt, J. Bacri, and N. Guillén, Overexpression of myosin IB in living Entamoeba histolytica enhances cytoplasm viscosity and reduces phagocytosis, Journal of Cell Science, vol.117, issue.15, pp.3271-3279, 2004.
DOI : 10.1242/jcs.01178

C. Wilhelm, Intracellular uptake of anionic superparamagnetic nanoparticles as a function of their surface coating, Biomaterials, vol.24, issue.6, pp.1001-1011, 2003.
DOI : 10.1016/S0142-9612(02)00440-4

L. Josephson, C. Tung, A. Moore, and R. Weissleder, High-Efficiency Intracellular Magnetic Labeling with Novel Superparamagnetic-Tat Peptide Conjugates, Bioconjugate Chemistry, vol.10, issue.2, pp.186-191, 1999.
DOI : 10.1021/bc980125h

K. Montet-abou, X. Montet, R. Weissleder, and L. Josephson, Cell internalization of magnetic nanoparticles using transfection agents. Molecular imaging, p.1, 2007.

I. Lynch, A. Salvati, and K. Dawson, Protein-nanoparticle interactions, Nano Today, vol.3, issue.1-2, pp.546-547, 2009.
DOI : 10.1016/S1748-0132(08)70014-8

L. Ln, Nanomagnetic sensing of blood plasma protein interactions with iron oxide nanoparticles: impact on macrophage uptake, Acs Nano, vol.2012, issue.63, pp.2665-2678

D. Fayol, N. Luciani, L. Lartigue, F. Gazeau, and C. Wilhelm, Managing Magnetic Nanoparticle Aggregation and Cellular Uptake: a Precondition for Efficient Stem-Cell Differentiation and MRI Tracking, Advanced Healthcare Materials 2012, pp.313-325
DOI : 10.1002/adhm.201200294

C. Wilhelm and F. Gazeau, Universal cell labelling with anionic magnetic nanoparticles, Biomaterials, vol.29, issue.22, pp.3161-3174, 2008.
DOI : 10.1016/j.biomaterials.2008.04.016

URL : https://hal.archives-ouvertes.fr/hal-00315466

A. Arbab, A model of lysosomal metabolism of dextran coated superparamagnetic iron oxide (SPIO) nanoparticles: implications for cellular magnetic resonance imaging, NMR in Biomedicine, vol.15, issue.6, pp.383-389, 2005.
DOI : 10.1002/nbm.970

M. Lévy, Degradability of superparamagnetic nanoparticles in a model of intracellular environment: follow-up of magnetic, structural and chemical properties, Nanotechnology, vol.21, issue.39, p.395103, 2010.
DOI : 10.1088/0957-4484/21/39/395103

M. Levy, Long term in vivo biotransformation of iron oxide nanoparticles, Biomaterials, vol.32, issue.16, pp.3988-3999
DOI : 10.1016/j.biomaterials.2011.02.031

URL : https://hal.archives-ouvertes.fr/ineris-00963273

E. Pawelczyk, A. Arbab, S. Pandit, E. Hu, and J. Frank, Expression of transferrin receptor and ferritin following ferumoxides???protamine sulfate labeling of cells: implications for cellular magnetic resonance imaging, NMR in Biomedicine, vol.11, issue.5, pp.581-592, 2006.
DOI : 10.1002/nbm.1038

E. Farrell, Cell labelling with superparamagnetic iron oxide has no effect on chondrocyte behaviour. Osteoarthritis and cartilage/OARS, Osteoarthritis Research Society, pp.961-967, 2009.

D. Kedziorek, Gene expression profiling reveals early cellular responses to intracellular magnetic labeling with superparamagnetic iron oxide nanoparticles, Magnetic Resonance in Medicine, vol.55, issue.4, pp.1031-1043, 2010.
DOI : 10.1002/mrm.22290

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2858578

A. Arbab and J. Frank, Cellular MRI and its role in stem cell therapy, Regenerative Medicine, vol.3, issue.2, pp.199-215, 2008.
DOI : 10.2217/17460751.3.2.199

M. Neri, Efficient In Vitro Labeling of Human Neural Precursor Cells with Superparamagnetic Iron Oxide Particles: Relevance for In Vivo Cell Tracking, Stem Cells, vol.20, issue.2, pp.505-516, 2008.
DOI : 10.1634/stemcells.2007-0251

M. Cohen, N. Muja, N. Fainstein, J. Bulte, and T. Ben-hur, Conserved fate and function of ferumoxides-labeled neural precursor cells in vitro and in vivo, Journal of Neuroscience Research, vol.355, issue.5, pp.936-944, 2010.
DOI : 10.1002/jnr.22277

L. Kostura, D. Kraitchman, A. Mackay, M. Pittenger, and J. Bulte, Feridex labeling of mesenchymal stem cells inhibits chondrogenesis but not adipogenesis or osteogenesis, NMR in Biomedicine, vol.76, issue.7, pp.513-517, 2004.
DOI : 10.1002/nbm.925

E. Farrell, Effects of iron oxide incorporation for long term cell tracking on MSC differentiation in vitro and in vivo, Biochemical and Biophysical Research Communications, vol.369, issue.4, pp.1076-1081, 2008.
DOI : 10.1016/j.bbrc.2008.02.159

A. Arbab, Labeling of cells with ferumoxides-protamine sulfate complexes does not inhibit function or differentiation capacity of hematopoietic or mesenchymal stem cells, NMR in Biomedicine, vol.102, issue.8, pp.553-559, 2005.
DOI : 10.1002/nbm.991

T. Henning, The influence of ferucarbotran on the chondrogenesis of human mesenchymal stem cells, Contrast Media & Molecular Imaging, vol.244, issue.4, pp.165-173, 2009.
DOI : 10.1002/mrm22011

C. Wilhelm, F. Lavialle, C. Pechoux, I. Tatischeff, and F. Gazeau, Intracellular Trafficking of Magnetic Nanoparticles to Design Multifunctional Biovesicles, Small, vol.31, issue.5, pp.577-582, 2008.
DOI : 10.1002/smll.200700523

N. Luciani, C. Wilhelm, and F. Gazeau, The role of cell-released microvesicles in the intercellular transfer of magnetic nanoparticles in the monocyte/macrophage system, Biomaterials, vol.31, issue.27, pp.317061-7069, 2010.
DOI : 10.1016/j.biomaterials.2010.05.062

A. Silva, C. Wilhelm, J. Kolosnjaj-tabi, N. Luciani, and F. Gazeau, Cellular Transfer of Magnetic Nanoparticles Via Cell Microvesicles: Impact on Cell Tracking by Magnetic Resonance Imaging, Pharmaceutical Research, vol.4, issue.10, pp.1392-1403
DOI : 10.1007/s11095-012-0680-1

E. Pawelczyk, In Vitro Model of Bromodeoxyuridine or Iron Oxide Nanoparticle Uptake by Activated Macrophages from Labeled Stem Cells: Implications for Cellular Therapy, Stem Cells, vol.41, issue.5, pp.1366-1375, 2008.
DOI : 10.1634/stemcells.2007-0707

E. Pawelczyk, In Vivo Transfer of Intracellular Labels from Locally Implanted Bone Marrow Stromal Cells to Resident Tissue Macrophages, PLoS ONE, vol.41, issue.12, 2009.
DOI : 10.1371/journal.pone.0006712.s001

C. Wilhelm, F. Gazeau, and J. Bacri, Magnetophoresis and ferromagnetic resonance of magnetically labeled cells, European Biophysics Journal, vol.31, issue.2, pp.118-125, 2002.
DOI : 10.1007/s00249-001-0200-4

C. Wilhelm, C. Riviere, and N. Biais, aggregation, Physical Review E, vol.75, issue.4, p.41906, 2007.
DOI : 10.1103/PhysRevE.75.041906

L. Darrasse and J. Ginefri, Perspectives with cryogenic RF probes in biomedical MRI, Biochimie, vol.85, issue.9, pp.915-937, 2003.
DOI : 10.1016/j.biochi.2003.09.016

A. Faraj, Real-time high-resolution magnetic resonance tracking of macrophage subpopulations in a murine inflammation model: a pilot study with a commercially available cryogenic probe, Contrast media & molecular imaging 2013, pp.193-203
DOI : 10.1002/cmmi.1516

C. Corot, P. Robert, J. Idée, and M. Port, Recent advances in iron oxide nanocrystal technology for medical imaging Advanced drug delivery reviews, pp.581471-1504, 2006.

C. Billotey, Cell internalization of anionic maghemite nanoparticles: quantitative effect on magnetic resonance imaging. Magnetic resonance in medicine, pp.646-654, 2003.

M. Lévy, C. Wilhelm, M. Devaud, P. Levitz, and F. Gazeau, How cellular processing of superparamagnetic nanoparticles affects their magnetic behavior and NMR relaxivity, Contrast Media & Molecular Imaging, vol.44, issue.3-4, pp.373-383
DOI : 10.1002/cmmi.504

P. Smirnov, In vivo single cell detection of tumor -infiltrating lymphocytes with a clinical 1.5 Tesla MRI system. Magnetic resonance in medicine, pp.1292-1297, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00348170

P. Smirnov, In vivo cellular imaging of lymphocyte trafficking by MRI: A tumor model approach to cell -based anticancer therapy. Magnetic resonance in medicine, pp.498-508, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00348207

C. Wilhelm, A. Cebers, J. Bacri, and F. Gazeau, Deformation of intracellular endosomes under a magnetic field, European Biophysics Journal, vol.46, issue.7, pp.655-660, 2003.
DOI : 10.1007/s00249-003-0312-0

D. Robert, Cell sorting by endocytotic capacity in a microfluidic magnetophoresis device, Lab on a Chip, vol.106, issue.11, pp.1902-1910, 2011.
DOI : 10.1039/c0lc00656d

C. Wilhelm, Magnetic control of vascular network formation with magnetically labeled endothelial progenitor cells, Biomaterials, vol.28, issue.26, pp.3797-3806, 2007.
DOI : 10.1016/j.biomaterials.2007.04.047

D. Robert, Magnetic micro-manipulations to probe the local physical properties of porous scaffolds and to confine stem cells, Biomaterials, vol.31, issue.7, pp.311586-1595, 2010.
DOI : 10.1016/j.biomaterials.2009.11.014

D. Fayol, Use of Magnetic Forces to Promote Stem Cell Aggregation During Differentiation, and Cartilage Tissue Modeling, Advanced Materials, vol.31, issue.18, pp.252611-2616
DOI : 10.1002/adma.201300342

A. Chaudeurge, Can Magnetic Targeting of Magnetically Labeled Circulating Cells Optimize Intramyocardial Cell Retention?, Cell Transplantation, vol.21, issue.4, pp.679-691
DOI : 10.3727/096368911X612440

K. Cheng, Magnetic Targeting Enhances Engraftment and Functional Benefit of Iron-Labeled Cardiosphere-Derived Cells in Myocardial Infarction, Circulation Research, vol.106, issue.10, pp.1570-1581
DOI : 10.1161/CIRCRESAHA.109.212589

J. Riegler, Targeted magnetic delivery and tracking of cells using a magnetic resonance imaging system, Biomaterials, vol.31, issue.20, pp.315366-5371
DOI : 10.1016/j.biomaterials.2010.03.032

A. Luciani, Magnetic targeting of iron-oxide-labeled fluorescent hepatoma cells to the liver, European Radiology, vol.14, issue.5, pp.1087-1096, 2009.
DOI : 10.1007/s00330-008-1262-9

P. Smirnov, Single -cell detection by gradient echo 9.4 T MRI: a parametric study. Contrast media & molecular imaging, pp.165-174, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00138987