M. Carlsson and A. Carlsson, Interactions between glutamatergic and monoaminergic systems within the basal ganglia-implications for schizophrenia and Parkinson's disease, Trends in Neurosciences, vol.13, issue.7, pp.272-276, 1990.
DOI : 10.1016/0166-2236(90)90108-M

A. Lang and A. Lozano, Parkinson's Disease, New England Journal of Medicine, vol.339, issue.15, pp.1044-1053, 1998.
DOI : 10.1056/NEJM199810083391506

A. Lang and A. Lozano, Parkinson's Disease, New England Journal of Medicine, vol.339, issue.16, pp.1130-1143, 1998.
DOI : 10.1056/NEJM199810153391607

K. Lange, J. Kornhuber, and P. Riederer, Dopamine/glutamate interactions in Parkinson's disease, Neuroscience & Biobehavioral Reviews, vol.21, issue.4, pp.393-400, 1997.
DOI : 10.1016/S0149-7634(96)00043-7

J. Abarca, K. Gysling, R. Roth, and G. Bustos, Changes in extracellular levels of glutamate and aspartate in rat substantia nigra induced by dopamine receptor ligands: In vivo microdialysis studies, Neurochemical Research, vol.58, issue.Suppl. 2, pp.159-169, 1995.
DOI : 10.1007/BF00970540

C. Biggs and M. Starr, Dopamine and glutamate control each other's release in the basal ganglia: a microdialysis study of the entopeduncular nucleus and substantia nigra, Neuroscience & Biobehavioral Reviews, vol.21, issue.4, pp.497-504, 1997.
DOI : 10.1016/S0149-7634(96)00032-2

F. Blandini, R. Porter, and J. Greenamyre, Glutamate and Parkinson???s disease, Molecular Neurobiology, vol.9, issue.S1, pp.73-94, 1996.
DOI : 10.1007/BF02740748

J. Greenamyre, Glutamate-dopamine interactions in the basal ganglia: relationship to Parkinson's disease, Journal of Neural Transmission, vol.5, issue.2, pp.255-269, 1993.
DOI : 10.1007/BF01245235

N. Lindefors and U. Ungerstedt, Bilateral regulation of glutamate tissue and extracellular levels in caudate-putamen by midbrain dopamine neurons, Neuroscience Letters, vol.115, issue.2-3, pp.248-252, 1990.
DOI : 10.1016/0304-3940(90)90463-J

R. Walker, R. Koch, J. Sweeney, C. Moore, and C. Meshul, Effects of subthalamic nucleus lesions and stimulation upon glutamate levels in the dopamine-depleted rat striatum, NeuroReport, vol.20, issue.8, pp.770-775, 2009.
DOI : 10.1097/WNR.0b013e32832ad556

R. Walker, C. Moore, G. Davies, L. Dirling, R. Koch et al., Effects of Subthalamic Nucleus Lesions and Stimulation upon Corticostriatal Afferents in the 6-Hydroxydopamine-Lesioned Rat, PLoS ONE, vol.10, issue.3, p.32919, 2012.
DOI : 10.1371/journal.pone.0032919.t002

A. Quintana, V. Sgambato-faure, and M. Savasta, Effects of L-DOPA and STN-HFS dyskinesiogenic treatments on NR2B regulation in basal ganglia in the rat model of Parkinson's disease, Neurobiology of Disease, vol.48, issue.3, pp.379-390, 2012.
DOI : 10.1016/j.nbd.2012.06.009

V. Sgambato-faure and M. Cenci, Glutamatergic mechanisms in the dyskinesias induced by pharmacological dopamine replacement and deep brain stimulation for the treatment of Parkinson's disease, Progress in Neurobiology, vol.96, issue.1, pp.69-86, 2012.
DOI : 10.1016/j.pneurobio.2011.10.005

S. Boulet, E. Lacombe, C. Carcenac, C. Feuerstein, V. Sgambato-faure et al., Subthalamic Stimulation-Induced Forelimb Dyskinesias Are Linked to an Increase in Glutamate Levels in the Substantia Nigra Pars Reticulata, Journal of Neuroscience, vol.26, issue.42, pp.10768-10776, 2006.
DOI : 10.1523/JNEUROSCI.3065-06.2006

URL : https://hal.archives-ouvertes.fr/inserm-00391608

F. Windels, N. Bruet, A. Poupard, N. Urbain, G. Chouvet et al., Effects of high frequency stimulation of subthalamic nucleus on extracellular glutamate and GABA in substantia nigra and globus pallidus in the normal rat, European Journal of Neuroscience, vol.192, issue.11, pp.4141-4146, 2000.
DOI : 10.1046/j.1460-9568.2000.00296.x

F. Windels, C. Carcenac, A. Poupard, and M. Savasta, Pallidal Origin of GABA Release within the Substantia Nigra Pars Reticulata during High-Frequency Stimulation of the Subthalamic Nucleus, Journal of Neuroscience, vol.25, issue.20, pp.5079-5086, 2005.
DOI : 10.1523/JNEUROSCI.0360-05.2005

URL : https://hal.archives-ouvertes.fr/inserm-00391646

O. Hassani, M. Mouroux, and J. Feger, Increased subthalamic neuronal activity after nigral dopaminergic lesion independent of disinhibition via the globus pallidus, Neuroscience, vol.72, issue.1, pp.105-115, 1996.
DOI : 10.1016/0306-4522(95)00535-8

E. Mestikawy, S. Wallén-mackenzie, A. Fortin, G. Descarries, L. Trudeau et al., From glutamate co-release to vesicular synergy: vesicular glutamate transporters, Nature Reviews Neuroscience, vol.263, issue.4, pp.204-216, 2011.
DOI : 10.1038/nrn2969

Y. Aihara, H. Mashima, H. Onda, S. Hisano, H. Kasuya et al., Molecular Cloning of a Novel Brain-Type Na+-Dependent Inorganic Phosphate Cotransporter, Journal of Neurochemistry, vol.201, issue.6, pp.2622-2625, 2000.
DOI : 10.1046/j.1471-4159.2000.0742622.x

E. Bellocchio, R. Reimer, R. Fremeau, and R. Edwards, Uptake of Glutamate into Synaptic Vesicles by an Inorganic Phosphate Transporter, Science, vol.289, issue.5481, pp.957-960, 2000.
DOI : 10.1126/science.289.5481.957

R. Fremeau, . Jr, K. Kam, T. Qureshi, J. Johnson et al., Vesicular Glutamate Transporters 1 and 2 Target to Functionally Distinct Synaptic Release Sites, Science, vol.304, issue.5678, pp.1815-1819, 2004.
DOI : 10.1126/science.1097468

C. Gras, E. Herzog, G. Bellenchi, V. Bernard, P. Ravassard et al., El Mestikawy S: A third vesicular glutamate transporter expressed by cholinergic and serotoninergic neurons, J Neurosci, vol.22, pp.5442-5451, 2002.

E. Herzog, G. Bellenchi, C. Gras, V. Bernard, P. Ravassard et al., El Mestikawy S: The existence of a second vesicular glutamate transporter specifies subpopulations of glutamatergic neurons, J Neurosci, vol.21, p.181, 2001.

S. Takamori, J. Rhee, C. Rosenmund, and R. Jahn, Identification of a vesicular glutamate transporter that defines a glutamatergic phenotype in neurons, Nature, vol.407, pp.189-194, 2000.

S. Takamori, J. Rhee, C. Rosenmund, and R. Jahn, Identification of differentiation-associated brain-specific phosphate transporter as a second vesicular glutamate transporter (VGLUT2), J Neurosci, vol.21, p.182, 2001.

E. Herzog, J. Gilchrist, C. Gras, A. Muzerelle, P. Ravassard et al., Localization of VGLUT3, the vesicular glutamate transporter type 3, in the rat brain, Neuroscience, vol.123, issue.4, pp.983-1002, 2004.
DOI : 10.1016/j.neuroscience.2003.10.039

A. Benabid, P. Pollak, C. Gross, D. Hoffmann, A. Benazzouz et al., Acute and Long-Term Effects of Subthalamic Nucleus Stimulation in Parkinson's Disease, Stereotactic and Functional Neurosurgery, vol.62, issue.1-4, pp.76-84, 1994.
DOI : 10.1159/000098600

P. Krack, A. Batir, N. Van-blercom, S. Chabardes, V. Fraix et al., Five-Year Follow-up of Bilateral Stimulation of the Subthalamic Nucleus in Advanced Parkinson's Disease, New England Journal of Medicine, vol.349, issue.20, pp.1925-1934, 2003.
DOI : 10.1056/NEJMoa035275

P. Limousin, P. Pollak, A. Benazzouz, D. Hoffman, E. Broussolle et al., Bilateral subthalamic nucleus stimulation for severe Parkinson's disease, Movement Disorders, vol.64, issue.5, pp.672-674, 1995.
DOI : 10.1002/mds.870100523

J. Dostrovsky and A. Lozano, Mechanisms of deep brain stimulation, Movement Disorders, vol.437, issue.S3, pp.63-68, 2002.
DOI : 10.1002/mds.10143

C. Mcintyre, M. Savasta, K. Goff, L. Vitek, and J. , Uncovering the mechanism(s) of action of deep brain stimulation: activation, inhibition, or both, Clinical Neurophysiology, vol.115, issue.6, pp.1239-1248, 2004.
DOI : 10.1016/j.clinph.2003.12.024

URL : https://hal.archives-ouvertes.fr/hal-00306742

M. Savasta, C. Carcenac, and S. Boulet, Mechanisms of High Frequency Stimulation of the Subthalamic Nucleus in Parkinson's Disease: From Local to Distal Effects on the Basal Ganglia Network.I nDiagnosis and Treatment of Parkinson' s Disease, pp.211-232

J. Deniau, B. Degos, C. Bosch, and M. N. , Deep brain stimulation mechanisms: beyond the concept of local functional inhibition, European Journal of Neuroscience, vol.156, issue.7, pp.1080-1091, 2010.
DOI : 10.1111/j.1460-9568.2010.07413.x

N. Bruet, F. Windels, C. Carcenac, C. Feuerstein, A. Bertrand et al., Neurochemical Mechanisms Induced by High Frequency Stimulation of the Subthalamic Nucleus: Increase of Extracellular Striatal Glutamate and GABA in Normal and Hemiparkinsonian Rats, Journal of Neuropathology & Experimental Neurology, vol.62, issue.12, pp.1228-1240, 2003.
DOI : 10.1093/jnen/62.12.1228

G. Paxinos and C. Watson, The rat brain.I nStereotaxic coordinates, 1982.

N. Bruet, F. Windels, A. Bertrand, C. Feuerstein, A. Poupard et al., High Frequency Stimulation of the Subthalamic Nucleus Increases the Extracellular Contents of Striatal Dopamine in Normal and Partially Dopaminergic Denervated Rats, Journal of Neuropathology & Experimental Neurology, vol.60, issue.1, pp.15-24, 2001.
DOI : 10.1093/jnen/60.1.15

P. Salin, C. Manrique, C. Forni, K. Goff, and L. , High-frequency stimulation of the subthalamic nucleus selectively reverses dopamine denervationinduced cellular defects in the output structures of the basal ganglia in the rat, J Neurosci, vol.22, pp.5137-5148, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00307870

C. Gras, B. Amilhon, E. Lepicard, O. Poirel, J. Vinatier et al., The vesicular glutamate transporter VGLUT3 synergizes striatal acetylcholine tone, Nature Neuroscience, vol.28, issue.3, pp.292-300, 2008.
DOI : 10.1038/nn2052

URL : https://hal.archives-ouvertes.fr/hal-00263930

T. Kaneko, F. Fujiyama, and H. Hioki, Immunohistochemical localization of candidates for vesicular glutamate transporters in the rat brain, The Journal of Comparative Neurology, vol.156, issue.1, pp.39-62, 2002.
DOI : 10.1002/cne.10129

K. Dzahini, C. Dentresangle, L. Cavorsin, M. Bertrand, A. Detraz et al., Pre-synaptic glutamate-induced activation of DA release in the striatum after partial nigral lesion, Journal of Neurochemistry, vol.13, issue.Suppl 3, pp.1459-1470, 2010.
DOI : 10.1111/j.1471-4159.2010.06682.x

URL : https://hal.archives-ouvertes.fr/inserm-00627888

X. Fan, X. Li, P. Ashe, and A. Juorio, Lesion of the substantia nigra pars compacta downregulates striatal glutamate receptor subunit mRNA expression, Brain Research, vol.850, issue.1-2, pp.79-86, 1999.
DOI : 10.1016/S0006-8993(99)02106-X

A. Massie, A. Schallier, K. Vermoesen, L. Arckens, and Y. Michotte, Biphasic and bilateral changes in striatal VGLUT1 and 2 protein expression in hemi-Parkinson rats, Neurochemistry International, vol.57, issue.2, pp.111-118, 2010.
DOI : 10.1016/j.neuint.2010.04.019

C. Meshul, J. Cogen, H. Cheng, C. Moore, L. Krentz et al., Alterations in Rat Striatal Glutamate Synapses Following a Lesion of the Cortico- and/or Nigrostriatal Pathway, Experimental Neurology, vol.165, issue.1, pp.191-206, 2000.
DOI : 10.1006/exnr.2000.7467

C. Meshul, N. Emre, C. Nakamura, C. Allen, M. Donohue et al., Time-dependent changes in striatal glutamate synapses following a 6-hydroxydopamine lesion, Neuroscience, vol.88, issue.1, pp.1-16, 1999.
DOI : 10.1016/S0306-4522(98)00189-4

S. Robinson, P. Freeman, C. Moore, J. Touchon, L. Krentz et al., Acute and subchronic MPTP administration differentially affects striatal glutamate synaptic function, Experimental Neurology, vol.180, issue.1, pp.74-87, 2003.
DOI : 10.1016/S0014-4886(02)00050-X

P. Calabresi, N. Mercuri, G. Sancesario, and G. Bernardi, Electrophysiology of dopamine-denervated striatal neurons. Implications for Parkinson's disease, Brain, vol.116, pp.433-452, 1993.

P. Gubellini, A. Eusebio, A. Oueslati, C. Melon, K. Goff et al., Chronic high-frequency stimulation of the subthalamic nucleus and L-DOPA treatment in experimental parkinsonism: effects on motor behaviour and striatal glutamate transmission, European Journal of Neuroscience, vol.10, issue.6, pp.1802-1814, 2006.
DOI : 10.1111/j.1460-9568.2006.05047.x

URL : https://hal.archives-ouvertes.fr/hal-00117030

R. Villalba and Y. Smith, Differential structural plasticity of corticostriatal and thalamostriatal axo-spinous synapses in MPTP-treated parkinsonian monkeys, The Journal of Comparative Neurology, vol.64, issue.Suppl 3, pp.989-1005, 2011.
DOI : 10.1002/cne.22563

M. Aymerich, P. Barroso-chinea, M. Pérez-manso, A. Muñoz-patiño, M. Moreno-igoa et al., Consequences of unilateral nigrostriatal denervation on the thalamostriatal pathway in rats, European Journal of Neuroscience, vol.471, issue.8, pp.2099-2108, 2006.
DOI : 10.1111/j.1460-9568.2006.04741.x

M. Herrera-marschitz, Z. You, M. Goiny, J. Meana, R. Silveira et al., On the Origin of Extracellular Glutamate Levels Monitored in the Basal Ganglia of the Rat by In Vivo Microdialysis, Journal of Neurochemistry, vol.66, issue.4, pp.1726-1735, 1996.
DOI : 10.1046/j.1471-4159.1996.66041726.x

D. Baker, Z. Xi, H. Shen, C. Swanson, and P. Kalivas, The origin and neuronal function of in vivo nonsynaptic glutamate, J Neurosci, vol.22, pp.9134-9141, 2002.

N. Danbolt and . Glutamate-uptake, Glutamate uptake, Progress in Neurobiology, vol.65, issue.1, pp.1-105, 2001.
DOI : 10.1016/S0301-0082(00)00067-8

E. Chung, L. Chen, Y. Chan, and K. Yung, Downregulation of glial glutamate transporters after dopamine denervation in the striatum of 6-hydroxydopamine-lesioned rats, The Journal of Comparative Neurology, vol.13, issue.Pt 2, pp.421-437, 2008.
DOI : 10.1002/cne.21852

J. Lievens, P. Salin, A. Nieoullon, K. Goff, and L. , Nigrostriatal denervation does not affect glutamate transporter mRNA expression but subsequent levodopa treatment selectively increases GLT1 mRNA and protein expression in the rat striatum, Journal of Neurochemistry, vol.425, issue.4, pp.893-902, 2001.
DOI : 10.1046/j.1471-4159.2001.00644.x

E. Chung, L. Chen, Y. Chan, and K. Yung, Up-Regulation in Expression of Vesicular Glutamate Transporter 3 in Substantia Nigra but Not in Striatum of 6-Hydroxydopamine-Lesioned Rats, Neurosignals, vol.15, issue.5, pp.238-248, 2006.
DOI : 10.1159/000101704

A. Kashani, C. Betancur, B. Giros, and E. Hirsch, Altered expression of vesicular glutamate transporters VGLUT1 and VGLUT2 in Parkinson disease, Neurobiology of Aging, vol.28, issue.4, pp.568-578, 2007.
DOI : 10.1016/j.neurobiolaging.2006.02.010

URL : https://hal.archives-ouvertes.fr/inserm-00154872

S. Robelet, C. Melon, B. Guillet, P. Salin, K. Goff et al., Chronic l-DOPA treatment increases extracellular glutamate levels and GLT1 expression in the basal ganglia in a rat model of Parkinson's disease, European Journal of Neuroscience, vol.14, issue.5, pp.1255-1266, 2004.
DOI : 10.1002/(SICI)1098-2396(199711)27:3<242::AID-SYN9>3.0.CO;2-D

D. Raju, T. Ahern, D. Shah, T. Wright, D. Standaert et al., Differential synaptic plasticity of the corticostriatal and thalamostriatal systems in an MPTP-treated monkey model of parkinsonism, European Journal of Neuroscience, vol.10, issue.7, pp.1647-1658, 2008.
DOI : 10.1073/pnas.0401764101

R. Albin, A. Young, and J. Penney, The functional anatomy of basal ganglia disorders, Trends in Neurosciences, vol.12, issue.10, pp.366-375, 1989.
DOI : 10.1016/0166-2236(89)90074-X

J. Henderson, K. Carpenter, H. Cartwright, and G. Halliday, Degeneration of the centr?? median???parafascicular complex in Parkinson's disease, Annals of Neurology, vol.47, issue.3, pp.345-352, 2000.
DOI : 10.1002/1531-8249(200003)47:3<345::AID-ANA10>3.3.CO;2-M

Y. Smith, D. Raju, B. Nanda, J. Pare, A. Galvan et al., The thalamostriatal systems: Anatomical and functional organization in normal and parkinsonian states, Brain Research Bulletin, vol.78, issue.2-3, pp.60-68, 2009.
DOI : 10.1016/j.brainresbull.2008.08.015

C. Lacey, J. Boyes, O. Gerlach, L. Chen, P. Magill et al., GABAB receptors at glutamatergic synapses in the rat striatum, Neuroscience, vol.136, issue.4, pp.1083-1095, 2005.
DOI : 10.1016/j.neuroscience.2005.07.013

V. Gomide, G. Silveira, and G. Chadi, Transient and Widespread Astroglial Activation in the Brain after a Striatal 6-Ohda-Induced Partial Lesion of the Nigrostriatal System, International Journal of Neuroscience, vol.538, issue.1, pp.99-117, 2005.
DOI : 10.1002/glia.440100203

J. Henning, U. Strauss, A. Wree, J. Gimsa, A. Rolfs et al., Differential astroglial activation in 6-hydroxydopamine models of Parkinson???s disease, Neuroscience Research, vol.62, issue.4, pp.246-253, 2008.
DOI : 10.1016/j.neures.2008.09.001

M. Delong, Primate models of movement disorders of basal ganglia origin, Trends in Neurosciences, vol.13, issue.7, pp.281-285, 1990.
DOI : 10.1016/0166-2236(90)90110-V

P. Hahn and C. Mcintyre, Modeling shifts in the rate and pattern of subthalamopallidal network activity during deep brain stimulation, Journal of Computational Neuroscience, vol.28, issue.Pt 2
DOI : 10.1007/s10827-010-0225-8

S. Li, G. Arbuthnott, M. Jutras, J. Goldberg, and D. Jaeger, Resonant Antidromic Cortical Circuit Activation as a Consequence of High-Frequency Subthalamic Deep-Brain Stimulation, Journal of Neurophysiology, vol.98, issue.6, pp.3525-3537, 2007.
DOI : 10.1152/jn.00808.2007

N. Maurice, A. Thierry, J. Glowinski, and J. Deniau, Spontaneous and evoked activity of substantia nigra pars reticulata neurons during highfrequency stimulation of the subthalamic nucleus, J Neurosci, vol.23, pp.9929-9936, 2003.

L. Jouve, P. Salin, C. Melon, K. Goff, and L. , Deep Brain Stimulation of the Center Median-Parafascicular Complex of the Thalamus Has Efficient Anti-Parkinsonian Action Associated with Widespread Cellular Responses in the Basal Ganglia Network in a Rat Model of Parkinson's Disease, Journal of Neuroscience, vol.30, issue.29, pp.9919-9928, 2010.
DOI : 10.1523/JNEUROSCI.1404-10.2010

K. Goff, L. Bacci, J. Jouve, L. Melon, C. Salin et al., Impact of surgery targeting the caudal intralaminar thalamic nuclei on the pathophysiological functioning of basal ganglia in a rat model of Parkinson???s disease, Brain Research Bulletin, vol.78, issue.2-3, pp.80-84, 2009.
DOI : 10.1016/j.brainresbull.2008.08.010

H. Varoqui, M. Schäfer, H. Zhu, E. Weihe, and J. Erickson, Identification of the differentiation-associated Na+/PI transporter as a novel vesicular glutamate transporter expressed in a distinct set of glutamatergic synapses, J Neurosci, vol.22, pp.142-155, 2002.

Z. Gao, W. Cui, C. Liu, A. Benazzouz, B. Bioulac et al., Modulation of apomorphine-induced rotations in unilaterally 6-hydroxydopamine lesioned rats by cholinergic agonists and antagonists High-frequency stimulation of the subthalamic nucleus and L-3,4-dihydroxyphenylalanine inhibit in vivo serotonin release in the prefrontal cortex and hippocampus in a rat model of Parkinson's disease, Life Sci J Neurosci, vol.60, issue.30, pp.2356-2364, 1997.

Y. Temel, L. Boothman, A. Blokland, P. Magill, H. Steinbusch et al., Inhibition of 5-HT neuron activity and induction of depressive-like behavior by high-frequency stimulation of the subthalamic nucleus, Proceedings of the National Academy of Sciences, vol.104, issue.43, pp.17087-17092, 2007.
DOI : 10.1073/pnas.0704144104