J. Ho, E. Bishop, P. Karchenko, N. Negre, K. White et al., ChIP-chip versus ChIP-seq: Lessons for experimental design and data analysis, BMC Genomics, vol.57, issue.1, p.134, 2011.
DOI : 10.1093/bioinformatics/btp472

A. Fejes, G. Robertson, M. Bilenky, R. Varhol, M. Bainbridge et al., FindPeaks 3.1: a tool for identifying areas of enrichment from massively parallel short-read sequencing technology, Bioinformatics, vol.24, issue.15, pp.1729-1730, 2008.
DOI : 10.1093/bioinformatics/btn305

D. Johnson, A. Mortazavi, R. Myers, and B. Wold, Genome-Wide Mapping of in Vivo Protein-DNA Interactions, Science, vol.316, issue.5830, pp.1497-1502, 2007.
DOI : 10.1126/science.1141319

H. Ji, H. Jiang, W. Ma, and W. Wong, Using CisGenome to Analyze ChIP-chip and ChIP-seq Data, Curr Protoc Bioinformatics, vol.15, 2011.
DOI : 10.1002/0471250953.bi0213s33

J. Rozowsky, G. Euskirchen, R. Auerbach, Z. Zhang, T. Gibson et al., PeakSeq enables systematic scoring of ChIP-seq experiments relative to controls, Nature Biotechnology, vol.6, issue.1, pp.66-75, 2009.
DOI : 10.1038/nbt.1518

J. Robertson, G. Steger, P. Neven, S. Barni, F. Gieseking et al., Activity of fulvestrant in HER2-overexpressing advanced breast cancer, Annals of Oncology, vol.21, issue.6, pp.1246-1253, 2010.
DOI : 10.1093/annonc/mdp447

Y. Zhang, T. Liu, C. Meyer, J. Eeckhoute, D. Johnson et al., Model-based Analysis of ChIP-Seq (MACS), Genome Biology, vol.9, issue.9, p.137, 2008.
DOI : 10.1186/gb-2008-9-9-r137

Q. Mo, A fully Bayesian hidden Ising model for ChIP-seq data analysis, Biostatistics, vol.13, issue.1, pp.113-128, 2012.
DOI : 10.1093/biostatistics/kxr029

Z. Qin, Y. J. Shen, J. Maher, C. Hu, M. Kalyana-sundaram et al., HPeak: an HMM-based algorithm for defining read-enriched regions in ChIP-Seq data, BMC Bioinformatics, vol.11, issue.1, p.369, 2010.
DOI : 10.1186/1471-2105-11-369

C. Spyrou, R. Stark, A. Lynch, and S. Tavare, BayesPeak: Bayesian analysis of ChIP-seq data, BMC Bioinformatics, vol.10, issue.1, p.299, 2009.
DOI : 10.1186/1471-2105-10-299

X. Zhang, G. Robertson, M. Krzywinski, K. Ning, A. Droit et al., PICS: Probabilistic Inference for ChIP-seq, Biometrics, vol.9, issue.1, pp.151-163, 2011.
DOI : 10.1111/j.1541-0420.2010.01441.x

X. Feng, R. Grossman, and L. Stein, PeakRanger: A cloud-enabled peak caller for ChIP-seq data, BMC Bioinformatics, vol.12, issue.1, p.139, 2011.
DOI : 10.1126/science.1196914

V. Hower, S. Evans, and L. Pachter, Shape-based peak identification for ChIP-Seq, BMC Bioinformatics, vol.12, issue.1, p.15, 2011.
DOI : 10.1186/1471-2105-12-15

K. Kornacker, M. Rye, T. Handstad, and F. Drablos, The Triform algorithm: improved sensitivity and specificity in ChIP-Seq peak finding, BMC Bioinformatics, vol.13, issue.1, p.176, 2012.
DOI : 10.1101/gr.849004

D. Reiss, M. Facciotti, and N. Baliga, Model-based deconvolution of genome-wide DNA binding, Bioinformatics, vol.24, issue.3, pp.396-403, 2008.
DOI : 10.1093/bioinformatics/btm592

M. Mendoza-parra, M. Sankar, M. Walia, and H. Gronemeyer, POLYPHEMUS: R package for comparative analysis of RNA polymerase II ChIP-seq profiles by non-linear normalization, Nucleic Acids Research, vol.40, issue.4, p.30, 2012.
DOI : 10.1093/nar/gkr1205

M. Rye, P. Saetrom, and F. Drablos, A manually curated ChIP-seq benchmark demonstrates room for improvement in current peak-finder programs, Nucleic Acids Research, vol.39, issue.4, p.25, 2011.
DOI : 10.1093/nar/gkq1187

J. Ernst, P. Kheradpour, T. Mikkelsen, N. Shoresh, L. Ward et al., Mapping and analysis of chromatin state dynamics in nine human cell types, Nature, vol.125, issue.7345, pp.43-49, 2011.
DOI : 10.1038/nature09906

D. Ceschin, M. Walia, S. Wenk, C. Duboe, C. Gaudon et al., Methylation specifies distinct estrogen-induced binding site repertoires of CBP to chromatin, Genes & Development, vol.25, issue.11, pp.1132-1146, 2011.
DOI : 10.1101/gad.619211

Q. Li, J. Brown, H. Huang, and P. Bickel, Measuring reproducibility of highthroughput experiments. The annals of applied statistics, p.1752, 2011.

S. Landt, G. Marinov, A. Kundaje, P. Kheradpour, F. Pauli et al., ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia, Genome Research, vol.22, issue.9, pp.1813-1831, 2012.
DOI : 10.1101/gr.136184.111

P. Kharchenko, M. Tolstorukov, and P. Park, Design and analysis of ChIP-seq experiments for DNA-binding proteins, Nature Biotechnology, vol.26, issue.12, pp.1351-1359, 2008.
DOI : 10.1016/S0167-9473(99)00100-0

P. Park, ChIP???seq: advantages and challenges of a maturing technology, Nature Reviews Genetics, vol.453, issue.10, pp.669-680, 2009.
DOI : 10.1038/nrg2641

M. Mendoza-parra, M. Walia, M. Sankar, and H. Gronemeyer, Dissecting the retinoid-induced differentiation of F9 embryonal stem cells by integrative genomics, Molecular Systems Biology, vol.34, issue.1, p.538, 2011.
DOI : 10.1186/gb-2008-9-9-r137

C. Zang, D. Schones, C. Zeng, K. Cui, K. Zhao et al., A clustering approach for identification of enriched domains from histone modification ChIP-Seq data, Bioinformatics, vol.25, issue.15, pp.1952-1958, 2009.
DOI : 10.1093/bioinformatics/btp340

Q. Song and A. Smith, Identifying dispersed epigenomic domains from ChIP-Seq data, Bioinformatics, vol.27, issue.6, pp.870-871, 2011.
DOI : 10.1093/bioinformatics/btr030

J. Wang, V. Lunyak, and I. Jordan, BroadPeak: a novel algorithm for identifying broad peaks in diffuse ChIP-seq datasets, Bioinformatics, vol.29, issue.4, pp.492-493, 2013.
DOI : 10.1093/bioinformatics/bts722

. Mendoza-parra, Characterising ChIP-seq binding patterns by model-based peak shape deconvolution, BMC Genomics, vol.14, issue.1, p.834, 2013.
DOI : 10.1093/bioinformatics/bts722

URL : https://hal.archives-ouvertes.fr/inserm-00913448