M. Bernal, Risk factors for suicidality in Europe: Results from the ESEMED study, Journal of Affective Disorders, vol.101, issue.1-3, pp.27-34, 2007.
DOI : 10.1016/j.jad.2006.09.018

D. Souery, G. Papakostas, and M. Trivedi, Treatment resistant depression, J Clin Psychiatry, vol.67, pp.16-22, 2006.

C. Cusin, D. Dougherty, . Ect, . Tms, and D. Vns, Somatic therapies for treatment-resistant depression: ECT, TMS, VNS, DBS, Biology of Mood & Anxiety Disorders, vol.2, issue.1, pp.14-23, 2012.
DOI : 10.1016/j.biopsych.2009.09.013

J. Fins, T. Schlaepfer, B. Nuttin, C. Kubu, T. Galert et al., Ethical guidance for the management of conflicts of interest for researchers, engineers and clinicians engaged in the development of therapeutic deep brain stimulation, Journal of Neural Engineering, vol.8, issue.3, p.33001, 2011.
DOI : 10.1088/1741-2560/8/3/033001

B. Aouizerate, Distinct striatal targets in treating obsessive-compulsive disorder and major depression, Journal of Neurosurgery, vol.111, issue.4, pp.775-779, 2009.
DOI : 10.3171/2009.2.JNS0881

URL : https://hal.archives-ouvertes.fr/hal-00805419

B. Aouizerate, Deep brain stimulation of the ventral caudate nucleus in the treatment of obsessive???compulsive disorder and major depression, Journal of Neurosurgery, vol.101, issue.4, pp.682-686, 2004.
DOI : 10.3171/jns.2004.101.4.0682

B. Bewernick, Nucleus Accumbens Deep Brain Stimulation Decreases Ratings of Depression and Anxiety in Treatment-Resistant Depression, Biological Psychiatry, vol.67, issue.2, pp.110-116, 2010.
DOI : 10.1016/j.biopsych.2009.09.013

T. Schlaepfer, Deep Brain Stimulation to Reward Circuitry Alleviates Anhedonia in Refractory Major Depression, Neuropsychopharmacology, vol.151, issue.2, pp.368-377, 2007.
DOI : 10.1007/s11920-006-0069-0

D. Malone and . Jr, Deep Brain Stimulation of the Ventral Capsule/Ventral Striatum for Treatment-Resistant Depression, Biological Psychiatry, vol.65, issue.4, pp.267-275, 2009.
DOI : 10.1016/j.biopsych.2008.08.029

H. Narabayashi, Stereotaxic Vim Thalamotomy for Treatment of Tremor, European Neurology, vol.29, issue.1, p.29, 1989.
DOI : 10.1159/000116450

R. Tasker, J. Siqueira, P. Hawrylyshyn, and L. Organ, What Happened to VIM Thalamotomy for Parkinson's Disease?, Stereotactic and Functional Neurosurgery, vol.46, issue.1-4, pp.68-83, 1983.
DOI : 10.1159/000101245

C. Ohye, T. Hirai, M. Miyazaki, T. Shibazaki, and H. Nakajima, Vim Thalamotomy for the Treatment of Various Kinds of Tremor, Stereotactic and Functional Neurosurgery, vol.45, issue.3, pp.275-280, 1982.
DOI : 10.1159/000101611

A. Benabid, Long-term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus, The Lancet, vol.337, issue.8738, pp.403-406, 1991.
DOI : 10.1016/0140-6736(91)91175-T

R. Gross and A. Lozano, Advances in neurostimulation for movement disorders, Neurological Research, vol.22, issue.3, pp.247-258, 2000.
DOI : 10.1080/01616412.2000.11740667

J. Vitek, Mechanisms of deep brain stimulation: Excitation or inhibition, Movement Disorders, vol.98, issue.S3, pp.69-72, 2002.
DOI : 10.1002/mds.10144

J. Abelson, Deep brain stimulation for refractory obsessive-compulsive disorder, Biological Psychiatry, vol.57, issue.5, pp.510-516, 2005.
DOI : 10.1016/j.biopsych.2004.11.042

M. Filali, W. Hutchison, V. Palter, A. Lozano, and J. Dostrovsky, Stimulation-induced inhibition of neuronal firing in human subthalamic nucleus, Experimental Brain Research, vol.156, issue.3, pp.274-281, 2004.
DOI : 10.1007/s00221-003-1784-y

P. Pahapill, Tremor arrest with thalamic microinjections of muscimol in patients with essential tremor, Annals of Neurology, vol.12, issue.2, pp.249-252, 1999.
DOI : 10.1002/1531-8249(199908)46:2<249::AID-ANA15>3.0.CO;2-C

D. Shin, High frequency stimulation or elevated K+ depresses neuronal activity in the rat entopeduncular nucleus, Neuroscience, vol.149, issue.1, pp.68-86, 2007.
DOI : 10.1016/j.neuroscience.2007.06.055

C. Beurrier, B. Bioulac, J. Audin, and C. Hammond, High-Frequency Stimulation Produces a Transient Blockade of Voltage-Gated Currents in Subthalamic Neurons, J Neurophysiol, vol.85, pp.1351-1356, 2001.
URL : https://hal.archives-ouvertes.fr/inserm-00484910

T. Anderson, B. Hu, K. Iremonger, and Z. Kiss, Selective Attenuation of Afferent Synaptic Transmission as a Mechanism of Thalamic Deep Brain Stimulation-Induced Tremor Arrest, Journal of Neuroscience, vol.26, issue.3, pp.841-850, 2006.
DOI : 10.1523/JNEUROSCI.3523-05.2006

L. Bekar, Adenosine is crucial for deep brain stimulation???mediated attenuation of tremor, Nature Medicine, vol.73, issue.1, pp.75-80, 2008.
DOI : 10.1016/j.clinph.2004.05.031

C. Mccracken and A. Grace, Nucleus Accumbens Deep Brain Stimulation Produces Region-Specific Alterations in Local Field Potential Oscillations and Evoked Responses In Vivo, Journal of Neuroscience, vol.29, issue.16, pp.5354-5363, 2009.
DOI : 10.1523/JNEUROSCI.0131-09.2009

A. Stefani, Subthalamic stimulation activates internal pallidus: Evidence from cGMP microdialysis in PD patients, Annals of Neurology, vol.42, issue.3, pp.448-452, 2005.
DOI : 10.1002/ana.20402

T. Hershey, Cortical and subcortical blood flow effects of subthalamic nucleus stimulation in PD, Neurology, vol.61, issue.6, pp.816-821, 2003.
DOI : 10.1212/01.WNL.0000083991.81859.73

R. Jech, Functional magnetic resonance imaging during deep brain stimulation: A pilot study in four patients with Parkinson's disease, Movement Disorders, vol.14, issue.suppl, pp.1126-1132, 2001.
DOI : 10.1002/mds.1217

J. Vitek, T. Hashimoto, J. Peoples, M. Delong, and R. Bakay, Acute stimulation in the external segment of the globus pallidus improves parkinsonian motor signs, Movement Disorders, vol.122, issue.Pt 3, pp.907-915, 2004.
DOI : 10.1002/mds.20137

J. Lujan, A. Chaturvedi, and C. Mcintyre, Tracking the mechanisms of deep brain stimulation for neuropsychiatric disorders, Frontiers in Bioscience, vol.Volume, issue.13, pp.5892-5904, 2010.
DOI : 10.2741/3124

B. Greenberg and A. Rezai, ABSTRACT, CNS Spectrums, vol.88, issue.07, pp.522-526, 2003.
DOI : 10.1002/jmri.10069

C. Mcintyre, W. Grill, D. Sherman, and N. Thakor, Cellular Effects of Deep Brain Stimulation: Model-Based Analysis of Activation and Inhibition, Journal of Neurophysiology, vol.91, issue.4, pp.1457-1469, 2004.
DOI : 10.1152/jn.00989.2003

A. Benabid, A. Benazzous, and P. Pollak, Mechanisms of deep brain stimulation, Movement Disorders, vol.85, issue.S3, pp.73-74, 2002.
DOI : 10.1002/mds.10145

P. Basser, J. Mattiello, and D. Lebihan, MR diffusion tensor spectroscopy and imaging, Biophysical Journal, vol.66, issue.1, pp.259-267, 1994.
DOI : 10.1016/S0006-3495(94)80775-1

URL : https://hal.archives-ouvertes.fr/hal-00349721

D. Arceuil, H. Westmoreland, S. De-crespigny, and A. , An approach to high resolution diffusion tensor imaging in fixed primate brain, NeuroImage, vol.35, issue.2, pp.553-565, 2007.
DOI : 10.1016/j.neuroimage.2006.12.028

S. Mori, B. Crain, and V. Chacko, Van-Zijl PC: Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging

H. Johansen-berg, Anatomical Connectivity of the Subgenual Cingulate Region Targeted with Deep Brain Stimulation for Treatment-Resistant Depression, Cerebral Cortex, vol.18, issue.6, pp.1374-1383, 2008.
DOI : 10.1093/cercor/bhm167

C. Butson, S. Cooper, J. Henderson, and C. Mcintyre, Patient-specific analysis of the volume of tissue activated during deep brain stimulation, NeuroImage, vol.34, issue.2, pp.661-670, 2007.
DOI : 10.1016/j.neuroimage.2006.09.034

A. Chaturvedi, C. Butson, S. Cooper, and C. Mcintyre, Subthalamic Nucleus Deep Brain Stimulation: Accurate Axonal Threshold Prediction with Diffusion Tensor Based Electric Field Models, 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, pp.1240-1243, 2006.
DOI : 10.1109/IEMBS.2006.260502

C. Coffey, Quantitative Cerebral Anatomy in Depression, Archives of General Psychiatry, vol.50, issue.1, pp.7-16, 1993.
DOI : 10.1001/archpsyc.1993.01820130009002

M. Ballmaier, Mapping brain size and cortical gray matter changes in elderly depression, Biological Psychiatry, vol.55, issue.4, pp.382-389, 2004.
DOI : 10.1016/j.biopsych.2003.09.004

J. Bremner, Reduced volume of orbitofrontal cortex in major depression, Biological Psychiatry, vol.51, issue.4, pp.273-279, 2002.
DOI : 10.1016/S0006-3223(01)01336-1

L. Payne, M. Byrum, C. Steffens, D. Krishnan, and K. , Reduction of orbital frontal cortex volume in geriatric depression, Biol Psychiatry, vol.48, pp.971-975, 2000.

J. Macfall, M. Payne, J. Provenzale, and K. Krishnan, Medial orbital frontal lesions in late-onset depression, Biological Psychiatry, vol.49, issue.9, pp.803-806, 2001.
DOI : 10.1016/S0006-3223(00)01113-6

G. Rajkowska, Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression??????See accompanying Editorial, in this issue., Biological Psychiatry, vol.45, issue.9, pp.1085-1098, 1999.
DOI : 10.1016/S0006-3223(99)00041-4

W. Taylor, Smaller orbital frontal cortex volumes associated with functional disability in depressed elders, Biological Psychiatry, vol.53, issue.2, pp.144-149, 2003.
DOI : 10.1016/S0006-3223(02)01490-7

A. Thomas, Ischemic Basis for Deep White Matter Hyperintensities in Major Depression, Archives of General Psychiatry, vol.59, issue.9, pp.785-792, 2002.
DOI : 10.1001/archpsyc.59.9.785

E. Bora, A. Fornito, C. Pantelis, and M. Yücel, Gray matter abnormalities in Major Depressive Disorder: A meta-analysis of voxel based morphometry studies, Journal of Affective Disorders, vol.138, issue.1-2, 2011.
DOI : 10.1016/j.jad.2011.03.049

X. Si, J. Miguel-hidalgo, O. Dwyer, G. Stockmeier, C. Rajkowska et al., Age-Dependent Reductions in the Level of Glial Fibrillary Acidic Protein in the Prefrontal Cortex in Major Depression, Neuropsychopharmacology, vol.29, issue.11, pp.2088-2096, 2004.
DOI : 10.1038/sj.npp.1300525

W. Drevets, Neuroimaging and neuropathological studies of depression: implications for the cognitive-emotional features of mood disorders, Current Opinion in Neurobiology, vol.11, issue.2, pp.240-249, 2001.
DOI : 10.1016/S0959-4388(00)00203-8

W. Drevets, W. Bogers, and M. Raichle, Functional anatomical correlates of antidepressant drug treatment assessed using PET measures of regional glucose metabolism, European Neuropsychopharmacology, vol.12, issue.6, pp.527-544, 2002.
DOI : 10.1016/S0924-977X(02)00102-5

W. Drevets, J. Price, and M. Furey, Brain structural and functional abnormalities in mood disorders: implications for neurocircuitry models of depression, Brain Structure and Function, vol.56, issue.suppl 6, pp.93-118, 2008.
DOI : 10.1007/s00429-008-0189-x

W. Drevets, Neuroimaging studies of mood disorders, Biological Psychiatry, vol.48, issue.8, pp.813-829, 2000.
DOI : 10.1016/S0006-3223(00)01020-9

A. Brody, Regional Brain Metabolic Changes in Patients With Major Depression Treated With Either Paroxetine or Interpersonal Therapy, Archives of General Psychiatry, vol.58, issue.7, pp.631-640, 2001.
DOI : 10.1001/archpsyc.58.7.631

A. Brody, Brain metabolic changes associated with symptom factor improvement in major depressive disorder, Biological Psychiatry, vol.50, issue.3, pp.171-178, 2001.
DOI : 10.1016/S0006-3223(01)01117-9

R. Dunn, Principal components of the beck depression inventory and regional cerebral metabolism in unipolar and bipolar depression, Biological Psychiatry, vol.51, issue.5, pp.387-399, 2002.
DOI : 10.1016/S0006-3223(01)01244-6

K. Ebmeier, E. Rose, and D. Steele, Cognitive impairment and fMRI in major depression, Neurotoxicity Research, vol.59, issue.10, pp.87-92, 2006.
DOI : 10.1007/BF03033237

P. Fitzgerald, An fMRI study of prefrontal brain activation during multiple tasks in patients with major depressive disorder, Human Brain Mapping, vol.38, issue.4, pp.490-501, 2008.
DOI : 10.1002/hbm.20414

P. Harvey, Cognitive control and brain resources in major depression: An fMRI study using the n-back task, NeuroImage, vol.26, issue.3, pp.860-869, 2005.
DOI : 10.1016/j.neuroimage.2005.02.048

L. Baxter and . Jr, Cerebral Metabolic Rates for Glucose in Mood Disorders, Archives of General Psychiatry, vol.42, issue.5, pp.441-447, 1985.
DOI : 10.1001/archpsyc.1985.01790280019002

M. Buchsbaum, Effect of sertraline on regional metabolic rate in patients with affective disorder, Biological Psychiatry, vol.41, issue.1, pp.15-22, 1997.
DOI : 10.1016/S0006-3223(96)00097-2

J. Martinot, Left prefrontal glucose hypometabolism in the depressed state: a confirmation, Am J Psychiatry, vol.147, pp.1313-1317, 1990.

K. Putnam and L. Mcsweeney, Depressive symptoms and baseline prefrontal EEG alpha activity: A study utilizing Ecological Momentary Assessment, Biological Psychology, vol.77, issue.2, pp.237-240, 2008.
DOI : 10.1016/j.biopsycho.2007.10.010

G. Koob and M. Le-moal, Drug Addiction, Dysregulation of Reward, and Allostasis, Neuropsychopharmacology, vol.24, issue.2, pp.97-129, 2001.
DOI : 10.1016/S0893-133X(00)00195-0

V. Krishnan and E. Nestler, The molecular neurobiology of depression, Nature, vol.23, issue.7215, pp.894-902, 2008.
DOI : 10.1038/nature07455

Y. Agid, How can drug discovery for psychiatric disorders be improved?, Nature Reviews Drug Discovery, vol.22, issue.3, pp.189-201, 2007.
DOI : 10.1038/nrd2217

R. Berman, Antidepressant effects of ketamine in depressed patients, Biological Psychiatry, vol.47, issue.4, pp.351-354, 2000.
DOI : 10.1016/S0006-3223(99)00230-9

H. Ahmadi, M. Nasehi, P. Rostami, and M. Zarrindast, Involvement of the nucleus accumbens shell dopaminergic system in prelimbic NMDA-induced anxiolytic-like behaviors, Neuropharmacology, vol.71, pp.112-135, 2013.
DOI : 10.1016/j.neuropharm.2013.03.017

S. Maeng, C. Zarate, and . Jr, The role of glutamate in mood disorders: Results from the ketamine in major depression study and the presumed cellular mechanism underlying its antidepressant effects, Current Psychiatry Reports, vol.64, issue.Suppl, pp.467-474, 2007.
DOI : 10.1007/s11920-007-0063-1

C. Zarate and . Jr, A Randomized Trial of an N-methyl-D-aspartate Antagonist in Treatment-Resistant Major Depression, Archives of General Psychiatry, vol.63, issue.8, pp.856-864, 2006.
DOI : 10.1001/archpsyc.63.8.856

S. Maeng, Cellular Mechanisms Underlying the Antidepressant Effects of Ketamine: Role of ??-Amino-3-Hydroxy-5-Methylisoxazole-4-Propionic Acid Receptors, Biological Psychiatry, vol.63, issue.4, pp.349-352, 2008.
DOI : 10.1016/j.biopsych.2007.05.028

R. Machado-vieira, G. Salvadore, N. Diazgranados, C. Zarate, and . Jr, Ketamine and the next generation of antidepressants with a rapid onset of action, Pharmacology & Therapeutics, vol.123, issue.2, pp.143-150, 2009.
DOI : 10.1016/j.pharmthera.2009.02.010

T. Numakawa, Functional interactions between steroid hormones and neurotrophin BDNF, World Journal of Biological Chemistry, vol.1, issue.5, pp.133-143, 2010.
DOI : 10.4331/wjbc.v1.i5.133

T. Steckler, F. Holsboer, and J. Reul, Glucocorticoids and depression, Best Practice & Research Clinical Endocrinology & Metabolism, vol.13, issue.4, pp.597-614, 1999.
DOI : 10.1053/beem.1999.0046

B. Lee and Y. Kim, The Roles of BDNF in the Pathophysiology of Major Depression and in Antidepressant Treatment, Psychiatry Investigation, vol.7, issue.4, pp.231-235, 2010.
DOI : 10.4306/pi.2010.7.4.231

E. Gómez-lázaro, Individual differences in chronically defeated male mice: Behavioral, endocrine, immune, and neurotrophic changes as markers of vulnerability to the effects of stress, Stress, vol.15, issue.5
DOI : 10.1016/j.psyneuen.2008.03.013

D. Kendall, G. Stancel, and S. Enna, The influence of sex hormones on antidepressant-induced alterations in neurotransmitter receptor binding, J Neurosci, vol.2, pp.354-360, 1982.

L. Schneider, Estrogen Replacement and Response to Fluoxetine in a Multicenter Geriatric Depression Trial, American Journal of Geriatric Psychiatry, vol.5, issue.2, pp.97-106, 1997.
DOI : 10.1097/00019442-199721520-00002

V. Sturm, The nucleus accumbens: a target for deep brain stimulation in obsessive-compulsive-and anxiety-disorders

E. Nestler, Molecular basis of long-term plasticity underlying addiction, Nature Reviews Neuroscience, vol.34, issue.2, pp.119-128, 2001.
DOI : 10.1038/35053570

G. Yadid and A. Friedman, Dynamics of the dopaminergic system as a key component to the understanding of depression, Prog Brain Res, vol.172, pp.265-286, 2008.
DOI : 10.1016/S0079-6123(08)00913-8

O. Berton and E. Nestler, New approaches to antidepressant drug discovery: beyond monoamines, Nature Reviews Neuroscience, vol.101, issue.2, pp.137-151, 2006.
DOI : 10.1038/nn1276

P. Rada, Glutamate release in the nucleus accumbens is involved in behavioral depression during the Porsolt swim test, Neuroscience, vol.119, issue.2, pp.557-565, 2003.
DOI : 10.1016/S0306-4522(03)00162-3

Q. Yan, M. Reith, P. Jobe, and J. Dailey, Dizocilpine (MK-801) increases not only dopamine but also serotonin and norepinephrine transmissions in the nucleus accumbens as measured by microdialysis in freely moving rats, Brain Research, vol.765, issue.1, pp.149-158, 1997.
DOI : 10.1016/S0006-8993(97)00568-4

L. Tremblay, Probing Brain Reward System Function in Major Depressive Disorder, Archives of General Psychiatry, vol.59, issue.5, pp.409-416, 2002.
DOI : 10.1001/archpsyc.59.5.409

D. Pizzagalli, Reduced Caudate and Nucleus Accumbens Response to Rewards in Unmedicated Individuals With Major Depressive Disorder, American Journal of Psychiatry, vol.166, issue.6, pp.702-710, 2009.
DOI : 10.1176/appi.ajp.2008.08081201

G. Yadid, D. Overstreet, and A. Zangen, Limbic dopaminergic adaptation to a stressful stimulus in a rat model of depression, Brain Research, vol.896, issue.1-2, pp.43-47, 2001.
DOI : 10.1016/S0006-8993(00)03248-0

J. Epstein, Lack of Ventral Striatal Response to Positive Stimuli in Depressed Versus Normal Subjects, American Journal of Psychiatry, vol.163, issue.10, pp.1784-1790, 2006.
DOI : 10.1176/ajp.2006.163.10.1784

J. Wacker, D. Dillon, and D. Pizzagalli, The role of the nucleus accumbens and rostral anterior cingulate cortex in anhedonia: Integration of resting EEG, fMRI, and volumetric techniques, NeuroImage, vol.46, issue.1, pp.327-337, 2009.
DOI : 10.1016/j.neuroimage.2009.01.058

P. Harvey, J. Pruessner, Y. Czechowska, and M. Lepage, Individual differences in trait anhedonia: a structural and functional magnetic resonance imaging study in non-clinical subjects, Molecular Psychiatry, vol.65, issue.8, pp.767-775, 2007.
DOI : 10.1038/sj.mp.4002021

R. Ito, T. Robbins, and B. Everitt, Differential control over cocaine-seeking behavior by nucleus accumbens core and shell, Nature Neuroscience, vol.7, issue.4, pp.389-397, 2004.
DOI : 10.1038/nn1217

J. Dinieri, Altered Sensitivity to Rewarding and Aversive Drugs in Mice with Inducible Disruption of cAMP Response Element-Binding Protein Function within the Nucleus Accumbens, Journal of Neuroscience, vol.29, issue.6, pp.1855-1859, 2009.
DOI : 10.1523/JNEUROSCI.5104-08.2009

G. Mogenson, L. Swanson, and M. Wu, Neural projections from nucleus accumbens to globus pallidus, substantia innominata, and lateral preoptic-lateral hypothalamic area: an anatomical and electrophysiological investigation in the rat, J Neurosci, vol.3, pp.189-202, 1983.

S. Yoshimura, Rostral anterior cingulate cortex activity mediates the relationship between the depressive symptoms and the medial prefrontal cortex activity, Journal of Affective Disorders, vol.122, issue.1-2, pp.76-85, 2010.
DOI : 10.1016/j.jad.2009.06.017

L. Tremblay, Functional Neuroanatomical Substrates of Altered Reward Processing in Major Depressive Disorder Revealed by a Dopaminergic Probe, Archives of General Psychiatry, vol.62, issue.11, pp.1228-1236, 2005.
DOI : 10.1001/archpsyc.62.11.1228

C. Hamani and J. Nobrega, Preclinical Studies Modeling Deep Brain Stimulation for Depression, Biological Psychiatry, vol.72, issue.11, pp.916-923, 2012.
DOI : 10.1016/j.biopsych.2012.05.024

C. Hamani, M. Diwan, S. Isabella, A. Lozano, and J. Nobrega, Effects of different stimulation parameters on the antidepressant-like response of medial prefrontal cortex deep brain stimulation in rats, Journal of Psychiatric Research, vol.44, issue.11, pp.683-687, 2010.
DOI : 10.1016/j.jpsychires.2009.12.010

C. Hamani, Antidepressant-Like Effects of Medial Prefrontal Cortex Deep Brain Stimulation in Rats, Biological Psychiatry, vol.67, issue.2, pp.117-124, 2010.
DOI : 10.1016/j.biopsych.2009.08.025

R. Gersner, E. Toth, M. Isserles, and A. Zangen, Site-Specific Antidepressant Effects of Repeated Subconvulsive Electrical Stimulation: Potential Role of Brain-Derived Neurotrophic Factor, Biological Psychiatry, vol.67, issue.2, pp.125-132, 2010.
DOI : 10.1016/j.biopsych.2009.09.015

S. Falowski, An Evaluation of Neuroplasticity and Behavior After Deep Brain Stimulation of the Nucleus Accumbens in an Animal Model of Depression, Neurosurgery, vol.69, issue.6, pp.1281-1290, 2011.
DOI : 10.1227/NEU.0b013e3182237346

B. Bewernick, S. Kayser, V. Sturm, and T. Schlaepfer, Long-Term Effects of Nucleus Accumbens Deep Brain Stimulation in Treatment-Resistant Depression: Evidence for Sustained Efficacy, Neuropsychopharmacology, vol.61, issue.9, pp.1975-1985, 2012.
DOI : 10.1038/npp.2012.44

R. Anderson, Deep brain stimulation for treatment-resistant depression: Efficacy, safety and mechanisms of action, Neuroscience & Biobehavioral Reviews, vol.36, issue.8, pp.1920-1933, 2012.
DOI : 10.1016/j.neubiorev.2012.06.001

P. Blomsteldt, Deep brain stimulation in the treatment of depression, Acta Psychiatrica Scandinavica, vol.149, issue.Suppl 2, pp.4-11, 2011.
DOI : 10.1111/j.1600-0447.2010.01625.x

H. Mayberg, Deep Brain Stimulation for Treatment-Resistant Depression, Neuron, vol.45, issue.5, pp.651-660, 2005.
DOI : 10.1016/j.neuron.2005.02.014

S. Kennedy, Differences in Brain Glucose Metabolism Between Responders to CBT and Venlafaxine in a 16-Week Randomized Controlled Trial, American Journal of Psychiatry, vol.164, issue.5, pp.778-788, 2007.
DOI : 10.1176/ajp.2007.164.5.778

K. Van-laere, Metabolic imaging of anterior capsular stimulation in refractory obsessive-compulsive disorder: a key role for the subgenual anterior cingulate and ventral striatum, J Nucl Med, vol.47, issue.5, pp.740-747, 2006.

T. Schlaepfer, B. Bewernick, S. Kayser, B. Mädler, and V. Coenen, Rapid Effects of Deep Brain Stimulation for Treatment-Resistant Major Depression, Biological Psychiatry, vol.73, issue.12, pp.731204-731216
DOI : 10.1016/j.biopsych.2013.01.034

A. Deutch, A. Bourdelais, and D. Zahm, The nucleus accumbens core and shell: accumbal compartments and their functional attributes, Limbic Motor Circuits and Neuropsychiatry, pp.45-88, 1993.

A. Deutch and D. Cameron, Pharmacological characterization of dopamine systems in the nucleus accumbens core and shell, Neuroscience, vol.46, issue.1, pp.49-56, 1992.
DOI : 10.1016/0306-4522(92)90007-O

F. Pontieri, G. Tanda, D. Chiara, and G. , Intravenous cocaine, morphine, and amphetamine preferentially increase extracellular dopamine in the Nauczyciel et al, Journal of Molecular Psychiatry, vol.1, pp.17-28, 2013.

J. Parkinson, M. Olmstead, L. Burns, T. Robbins, and B. Everitt, Dissociation in effects of lesions of the nucleus accumbens core and shell on appetitive pavlovian approach behavior and the potentiation of conditioned reinforcement and locomotor activity byd-amphetamine

F. Vassoler, Deep Brain Stimulation of the Nucleus Accumbens Shell Attenuates Cocaine Priming-Induced Reinstatement of Drug Seeking in Rats, Journal of Neuroscience, vol.28, issue.35, pp.8735-8739, 2008.
DOI : 10.1523/JNEUROSCI.5277-07.2008

H. Fibiger, F. Lepiane, A. Jakubovic, and A. Phillips, The role of dopamine in intracranial self-stimulation of the ventral tegmental area, pp.3888-3896, 1987.

P. Garris, Dissociation of dopamine release in the nucleus accumbens from intracranial self-stimulation, Nature, vol.398, pp.67-69, 1999.

U. Springer, Long-term Habituation of the Smile Response with Deep Brain Stimulation, Neurocase, vol.12, issue.3, p.191, 2006.
DOI : 10.1080/13554790600646995