J. Fowler, N. Volkow, G. Wang, N. Pappas, J. Logan et al., Inhibition of monoamine oxidase B in the brains of smokers, Nature, vol.379, issue.6567, pp.733-736, 1996.
DOI : 10.1038/379733a0

A. Lewis, J. Miller, and R. Lea, Monoamine oxidase and tobacco dependence, NeuroToxicology, vol.28, issue.1, pp.182-195, 2007.
DOI : 10.1016/j.neuro.2006.05.019

J. Duncan, S. Johnson, and X. Ou, Monoamine oxidases in major depressive disorder and alcoholism, Drug Discoveries & Therapeutics, vol.6, pp.112-122, 2012.
DOI : 10.5582/ddt.2012.v6.3.112

K. Guillem, C. Vouillac, M. Azar, L. Parsons, G. Koob et al., Monoamine Oxidase Inhibition Dramatically Increases the Motivation to Self-Administer Nicotine in Rats, Journal of Neuroscience, vol.25, issue.38, pp.8593-8600, 2005.
DOI : 10.1523/JNEUROSCI.2139-05.2005

A. Villegier, L. Salomon, S. Granon, J. Changeux, J. Belluzzi et al., Monoamine Oxidase Inhibitors Allow Locomotor and Rewarding Responses to Nicotine, Neuropsychopharmacology, vol.15, issue.8, pp.1704-1713, 2006.
DOI : 10.1016/0024-3205(87)90446-2

URL : https://hal.archives-ouvertes.fr/hal-00121297

J. Fowler, N. Volkow, G. Wang, N. Pappas, J. Logan et al., Brain monoamine oxidase A inhibition in cigarette smokers, Proceedings of the National Academy of Sciences, vol.93, issue.24, pp.14065-14069, 1996.
DOI : 10.1073/pnas.93.24.14065

C. Leroy, V. Bragulat, I. Berlin, M. Gregoire, M. Bottlaender et al., Cerebral Monoamine Oxidase A Inhibition in Tobacco Smokers Confirmed With PET and [11C]Befloxatone, Journal of Clinical Psychopharmacology, vol.29, issue.1, pp.86-88, 2009.
DOI : 10.1097/JCP.0b013e31819e98f

M. Bergstrom, G. Westerberg, and B. Langstrom, 11C-harmine as a tracer for monoamine oxidase a (MAO-A): In vitro and in vivo studies, Nuclear Medicine and Biology, vol.24, issue.4, pp.287-293, 1997.
DOI : 10.1016/S0969-8051(97)00013-9

S. Ametamey, H. Beer, I. Guenther, A. Antonini, K. Leenders et al., Radiosynthesis of [11C]brofaromine, a potential tracer for imaging monoamine oxidase A, Nuclear Medicine and Biology, vol.23, issue.3, pp.229-234, 1996.
DOI : 10.1016/0969-8051(95)02051-9

O. Curet, G. Damoiseau, N. Aubin, N. Sontag, V. Rovei et al., Befloxatone, a new reversible and selective monoamine oxidase-A inhibitor. I Biochem profile, J Pharmacol Exp Ther, vol.277, pp.253-264, 1996.

F. Dolle, H. Valette, Y. Bramoulle, I. Guenther, C. Fuseau et al., Synthesis and in vivo imaging properties of [ 11 C]befloxatone: a novel highly potent positron emission tomography ligand for mono

M. Bottlaender, F. Dolle, I. Guenther, D. Roumenov, C. Fuseau et al., Mapping the Cerebral Monoamine Oxidase Type A: Positron Emission Tomography Characterization of the Reversible Selective Inhibitor [11C]Befloxatone, Journal of Pharmacology and Experimental Therapeutics, vol.305, issue.2, pp.467-473, 2003.
DOI : 10.1124/jpet.102.046953

H. Valette, M. Bottlaender, F. Dolle, C. Coulon, M. Ottaviani et al., Acute Inhibition of Cardiac Monoamine Oxidase A after Tobacco Smoke Inhalation: Validation Study of [11C]Befloxatone in Rats Followed by a Positron Emission Tomography Application in Baboons, Journal of Pharmacology and Experimental Therapeutics, vol.314, issue.1, pp.431-436, 2005.
DOI : 10.1124/jpet.105.085704

M. Bottlaender, H. Valette, J. Delforge, W. Saba, I. Guenther et al., C]befloxatone and the Multi-Injection Approach, Journal of Cerebral Blood Flow & Metabolism, vol.94, issue.4, pp.792-800, 2010.
DOI : 10.1038/jcbfm.1991.103

N. Tzourio-mazoyer, B. Landeau, D. Papathanassiou, F. Crivello, O. Etard et al., Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain, NeuroImage, vol.15, issue.1, pp.273-289, 2002.
DOI : 10.1006/nimg.2001.0978

R. Innis, V. Cunningham, J. Delforge, M. Fujita, A. Gjedde et al., Imaging of Reversibly Binding Radioligands, Journal of Cerebral Blood Flow & Metabolism, vol.15, issue.9, pp.1533-1539, 2007.
DOI : 10.1006/nimg.1996.0066

M. Huisman, L. Van-golen, N. Hoetjes, H. Greuter, P. Schober et al., Cerebral blood flow and glucose metabolism in healthy volunteers measured using a high-resolution PET scanner, EJNMMI Research, vol.2, issue.1, p.63, 2012.
DOI : 10.1210/jc.86.5.1986

J. Logan, J. Fowler, N. Volkow, A. Wolf, S. Dewey et al., C-Methyl]-(???)-Cocaine PET Studies in Human Subjects, Journal of Cerebral Blood Flow & Metabolism, vol.226, issue.5, pp.740-747, 1990.
DOI : 10.1038/jcbfm.1983.1

M. Slifstein and M. Laruelle, Effects of statistical noise on graphic analysis of PET neuroreceptor studies, J Nucl Med, vol.41, pp.2083-2088, 2000.

M. Ichise, H. Toyama, R. Innis, and R. Carson, Strategies to Improve Neuroreceptor Parameter Estimation by Linear Regression Analysis, Journal of Cerebral Blood Flow & Metabolism, vol.22, issue.10, pp.1271-1281, 2002.
DOI : 10.1097/01.WCB.0000038000.34930.4E

V. Cunningham and T. Jones, Spectral Analysis of Dynamic PET Studies, Journal of Cerebral Blood Flow & Metabolism, vol.33, issue.1, pp.15-23, 1993.
DOI : 10.1038/jcbfm.1983.1

M. Veronese, G. Rizzo, F. Turkheimer, and A. Bertoldo, SAKE: A new quantification tool for positron emission tomography studies, Computer Methods and Programs in Biomedicine, vol.111, issue.1, pp.199-213, 2013.
DOI : 10.1016/j.cmpb.2013.03.016

R. Hawkins, M. Phelps, and S. Huang, Effects of Temporal Sampling, Glucose Metabolic Rates, and Disruptions of the Blood???Brain Barrier on the FDG Model with and without a Vascular Compartment: Studies in Human Brain Tumors with PET, Journal of Cerebral Blood Flow & Metabolism, vol.5, issue.2, pp.170-183, 1986.
DOI : 10.1214/aos/1176344136

R. Carson, M. Phelps, J. Mazziotta, and H. Schelbert, Parameter estimation in positron emission tomography In Positron Emission Tomography and Autoradiography: Principles and Applications for the Brain and Heart, pp.347-390

P. Bevington and D. Robinson, Data Reduction and Error Analysis for the Physical Sciences, Computers in Physics, vol.7, issue.4, 2003.
DOI : 10.1063/1.4823194

X. Cao, X. Li, and D. Mousseau, Calcium alters monoamine oxidase-A parameters in human cerebellar and rat glial C6 cell extracts: Possible influence by distinct signalling pathways, Life Sciences, vol.85, issue.5-6, pp.262-268, 2009.
DOI : 10.1016/j.lfs.2009.06.004

J. Richards, J. Saura, J. Ulrich, D. Prada, and M. , Molecular neuroanatomy of monoamine oxidases in human brainstem, Psychopharmacology, vol.32, issue.suppl, pp.21-23
DOI : 10.1007/BF02246228

J. Saura, Z. Bleuel, J. Ulrich, A. Mendelowitsch, K. Chen et al., Molecular neuroanatomy of human monoamine oxidases A and B revealed by quantitative enzyme radioautography and in situ hybridization histochemistry, Neuroscience, vol.70, issue.3, pp.755-774, 1996.
DOI : 10.1016/S0306-4522(96)83013-2

W. Chiou, The Phenomenon and Rationale of Marked Dependence of Drug Concentration on Blood Sampling Site, Clinical Pharmacokinetics, vol.17, issue.4, pp.275-290, 1989.
DOI : 10.2165/00003088-198917040-00005

W. Chiou, The Phenomenon and Rationale of Marked Dependence of Drug Concentration on Blood Sampling Site, Clinical Pharmacokinetics, vol.17, issue.3, pp.175-199, 1989.
DOI : 10.2165/00003088-198917030-00004

K. Frayn and I. Macdonald, Methodological considerations in arterialization of venous blood, Clin Chem, vol.38, pp.316-317, 1992.

J. Green, F. Ellis, T. Shallcross, and P. Bramley, Invalidity of hand heating as a method to arterialize venous blood, Clin Chem, vol.36, pp.719-722, 1990.

. Zanotti-fregonara, Kinetic analysis of [ 11 C] befloxatone in the human brain, a selective radioligand to image monoamine oxidase A. EJNMMI Research, p.78, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-00911737