S. Cruz-biotechnology and S. Cruz, CA) and anti-AKT (New England Biolabs) antibodies. Statistical analysis

. Whitney, Chi-square, or unpaired or paired Student's t-tests

R. 1. Bataille, R. Chappard, D. Marcelli, and C. , Recruitment of new osteoblasts and osteoclasts is the earliest critical event in the pathogenesis of human multiple myeloma., Journal of Clinical Investigation, vol.88, issue.1, pp.62-66, 1991.
DOI : 10.1172/JCI115305

J. Corre, K. Mahtouk, and M. Attal, Bone marrow mesenchymal stem cells are abnormal in multiple myeloma, Leukemia, vol.63, pp.1079-88, 2007.
DOI : 10.1038/sj.leu.2404621

URL : https://hal.archives-ouvertes.fr/inserm-00270565

R. Ria, K. Todoerti, and S. Berardi, Gene Expression Profiling of Bone Marrow Endothelial Cells in Patients with Multiple Myeloma, Clinical Cancer Research, vol.15, issue.17, pp.5369-5378, 2009.
DOI : 10.1158/1078-0432.CCR-09-0040

S. Yaccoby, M. Wezeman, and A. Henderson, Cancer and the Microenvironment: Myeloma-Osteoclast Interactions as a Model, Cancer Research, vol.64, issue.6, pp.2016-2023, 2004.
DOI : 10.1158/0008-5472.CAN-03-1131

T. Andersen, K. Soe, T. Sondergaard, T. Plesner, and J. Delaisse, Myeloma cell-induced disruption of bone remodelling compartments leads to osteolytic lesions and generation of osteoclast-myeloma hybrid cells, British Journal of Haematology, vol.19, issue.4, pp.551-61, 2010.
DOI : 10.1111/j.1365-2141.2009.07980.x

J. Han, S. Choi, N. Kurihara, M. Koide, Y. Oba et al., Macrophage inflammatory protein-1alpha is an osteoclastogenic factor in myeloma that is independent of receptor activator of nuclear factor kappaB ligand, Blood, vol.97, issue.11, pp.3349-3353, 2001.
DOI : 10.1182/blood.V97.11.3349

N. Giuliani, S. Colla, and R. Sala, Human myeloma cells stimulate the receptor activator of nuclear factor-kappa B ligand (RANKL) in T lymphocytes: a potential role in multiple myeloma bone disease, Blood, vol.100, issue.13, pp.4615-4621, 2002.
DOI : 10.1182/blood-2002-04-1121

R. Pearse, E. Sordillo, and S. Yaccoby, Multiple myeloma disrupts the TRANCE/ osteoprotegerin cytokine axis to trigger bone destruction and promote tumor progression, Proceedings of the National Academy of Sciences, vol.98, issue.20, pp.11581-11586, 2001.
DOI : 10.1073/pnas.201394498

J. Moreaux, F. Cremer, and T. Reme, The level of TACI gene expression in myeloma cells is associated with a signature of microenvironment dependence versus a plasmablastic signature, Blood, vol.106, issue.3, pp.1021-1030, 2005.
DOI : 10.1182/blood-2004-11-4512

URL : https://hal.archives-ouvertes.fr/inserm-00129406

R. Piva, L. Penolazzi, and M. Borgatti, Apoptosis of Human Primary Osteoclasts Treated with Molecules Targeting Nuclear Factor-??B, Annals of the New York Academy of Sciences, vol.5, issue.1, pp.448-456, 2009.
DOI : 10.1111/j.1749-6632.2009.04906.x

N. Giuliani, S. Colla, and F. Morandi, Myeloma cells block RUNX2/CBFA1 activity in human bone marrow osteoblast progenitors and inhibit osteoblast formation and differentiation, Blood, vol.106, issue.7, pp.2472-2483, 2005.
DOI : 10.1182/blood-2004-12-4986

B. Oyajobi, G. Mundy, Y. Oba, J. Lee, and L. Ehrlich, Receptor activator of NF-kappaB ligand, macrophage inflammatory protein-1alpha, and the proteasome: novel therapeutic targets in myeloma MIP-1alpha utilizes both CCR1 and CCR5 to induce osteoclast formation and increase adhesion of myeloma cells to marrow stromal cells, Cancer. Exp Hematol, vol.9733, issue.13, pp.813-817272, 2003.

S. Vallet, N. Raje, and K. Ishitsuka, MLN3897, a novel CCR1 inhibitor, impairs osteoclastogenesis and inhibits the interaction of multiple myeloma cells and osteoclasts Soluble receptor activator of nuclear factor kappaB ligand-osteoprotegerin ratio predicts survival in multiple myeloma: proposal for a novel prognostic index, Blood. Callander NS, Roodman GD. Myeloma bone disease. Semin Hematol. Blood, vol.11038102, issue.16, pp.3744-3752276, 2001.

M. Abe, K. Hiura, and J. Wilde, Role for macrophage inflammatory protein (MIP)-1alpha and MIP-1beta in the development of osteolytic lesions in multiple myeloma, Blood, vol.100, pp.2195-2202, 2002.

S. Choi, Y. Oba, and Y. Gazitt, Antisense inhibition of macrophage inflammatory protein 1-?? blocks bone destruction in a model of myeloma bone disease, Journal of Clinical Investigation, vol.108, issue.12, pp.1833-1841, 2001.
DOI : 10.1172/JCI200113116

J. Moreaux, D. Hose, and M. Jourdan, TACI expression is associated with a mature bone marrow plasma cell signature and C-MAF overexpression in human myeloma cell lines, Haematologica, vol.92, issue.6, pp.803-811, 2007.
DOI : 10.3324/haematol.10574

URL : https://hal.archives-ouvertes.fr/inserm-00162002

B. Barlogie, G. Tricot, and E. Rasmussen, Total therapy 2 without thalidomide in comparison with total therapy 1: role of intensified induction and posttransplantation consolidation therapies, Blood, vol.107, issue.7, pp.2633-2638, 2006.
DOI : 10.1182/blood-2005-10-4084

J. Rossi, J. Moreaux, and D. Hose, Atacicept in relapsed/refractory multiple myeloma or active Waldenstr??m's macroglobulinemia: a phase I study, British Journal of Cancer, vol.106, issue.7, pp.1051-1058, 2009.
DOI : 10.1038/sj.leu.2405048

M. Jourdan, A. Caraux, D. Vos, and J. , An in vitro model of differentiation of memory B cells into plasmablasts and plasma cells including detailed phenotypic and molecular characterization, Blood, vol.114, issue.25, pp.5173-5181, 2009.
DOI : 10.1182/blood-2009-07-235960

URL : https://hal.archives-ouvertes.fr/inserm-00446133

T. Reme, D. Hose, D. Vos, and J. , A new method for class prediction based on signed-rank algorithms applied to Affymetrix?? microarray experiments, BMC Bioinformatics, vol.9, issue.1, pp.16-25, 2008.
DOI : 10.1186/1471-2105-9-16

URL : https://hal.archives-ouvertes.fr/inserm-00268075

V. Broek, I. Asosingh, K. Vanderkerken, K. Straetmans, N. et al., Chemokine receptor CCR2 is expressed by human multiple myeloma cells and mediates migration to bone marrow stromal cell-produced monocyte chemotactic proteins MCP-1, -2 and -3, British Journal of Cancer, vol.88, issue.6, pp.855-862, 2003.
DOI : 10.1038/sj.bjc.6600833

D. Vos, J. Hose, D. Reme, and T. , Microarray-based understanding of normal and malignant plasma cells The pathogenesis of the bone disease of multiple myeloma, Immunol Rev. Bone, vol.21042, issue.29, pp.86-1041007, 2006.

G. Roodman, C. Cobaleda, A. Schebesta, A. Delogu, and M. Busslinger, New potential targets for treating myeloma bone disease Pax5: the guardian of B cell identity and function, Clin Cancer Res. Nat Immunol, vol.128, pp.6270-6273, 2006.

J. Moreaux, E. Legouffe, and E. Jourdan, BAFF and APRIL protect myeloma cells from apoptosis induced by interleukin 6 deprivation and dexamethasone, Blood, vol.103, issue.8, pp.3148-3157, 2004.
DOI : 10.1182/blood-2003-06-1984

URL : https://hal.archives-ouvertes.fr/inserm-00129502

A. Sprynski, D. Hose, and L. Caillot, The role of IGF-1 as a major growth factor for myeloma cell lines and the prognostic relevance of the expression of its receptor, Blood, vol.113, issue.19, pp.4614-4626, 2009.
DOI : 10.1182/blood-2008-07-170464

URL : https://hal.archives-ouvertes.fr/inserm-00367812

Z. Gu, V. Costes, and Z. Lu, Interleukin-10 is a growth factor for human myeloma cells by induction of an oncostatin M autocrine loop, Blood, vol.88, pp.3972-3986, 1996.

Z. Lu, X. Zhang, and C. Rodriguez, Interleukin-10 is a proliferation factor but not a differentiation factor for human myeloma cells, Blood, vol.85, issue.36, pp.2521-2527, 1995.

Z. Gu, J. Vos, and C. Rebouissou, Agonist anti-gp130 transducer monoclonal antibodies are human myeloma cell survival and growth factors, Leukemia, vol.14, issue.1, pp.188-197, 2000.
DOI : 10.1038/sj.leu.2401632

O. Sezer, Myeloma Bone Disease: Recent Advances in Biology, Diagnosis, and Treatment, The Oncologist, vol.14, issue.3, pp.276-283, 2009.
DOI : 10.1634/theoncologist.2009-0003

L. Pederson, M. Ruan, J. Westendorf, S. Khosla, M. Oursler et al., Regulation of bone formation by osteoclasts involves Wnt/BMP signaling and the chemokine sphingosine-1-phosphate The many roles of chemokines and chemokine receptors in inflammation, Proc Natl Acad Sci U S A. N Engl J Med, vol.105354, issue.39, pp.20764-20769610, 2006.

K. Vanderkerken, V. Broek, I. Eizirik, and D. , Monocyte chemoattractant protein-1 (MCP-1), secreted by bone marrow endothelial cells, induces chemoattraction of 5T multiple myeloma cells How chemokines invite leukocytes to dance, Clin Exp Metastasis. Nat Immunol, vol.199, pp.87-90953, 2002.

J. Rubin, Chemokine signaling in cancer: One hump or two?, Seminars in Cancer Biology, vol.19, issue.2, pp.116-122, 2009.
DOI : 10.1016/j.semcancer.2008.10.001

Y. Wang, S. Nishida, H. Elalieh, R. Long, B. Halloran et al., Role of IGF-I signaling in regulating osteoclastogenesis Bone marrow microenvironment and the identification of new targets for myeloma therapy, J Bone Miner Res. Leukemia, vol.2123, pp.1350-135810, 2006.

E. Hauge, D. Qvesel, E. Eriksen, L. Mosekilde, F. Melsen et al., Cancellous bone remodeling occurs in specialized compartments lined by cells expressing osteoblastic markers Remodeling and vascular spaces in bone, J Bone Miner Res. J Bone Miner Res, vol.1622, pp.1575-15821, 2001.

T. Andersen, T. Sondergaard, and K. Skorzynska, A Physical Mechanism for Coupling Bone Resorption and Formation in Adult Human Bone, The American Journal of Pathology, vol.174, issue.1, pp.239-247, 2009.
DOI : 10.2353/ajpath.2009.080627

Y. Tanaka, M. Abe, and M. Hiasa, Myeloma cell-osteoclast interaction enhances angiogenesis together with bone resorption: a role for vascular endothelial cell growth factor and osteopontin Atacicept (TACI-Ig) inhibits growth of TACI(high) primary myeloma cells in SCID-hu mice and in coculture with osteoclasts, Clin Cancer Res. Leukemia, vol.1322, issue.50, pp.816-823406, 2007.

A. Affymetrix and A. , CD14 (n = 5) and CD3 cells (n = 5), osteoclasts (n = 7), normal memory B cells (n = 6), normal polyclonal plasmablasts, BM CD34 cells BM stromal cells (n = 5) normal BM plasma cells (BMPC) (n = 7), and purified myeloma cells from patients with multiple myeloma (MM)

B. The and A. Baff, IL-6, or IGF-1 were assayed with an ELISA in 3-day culture supernatant of XG-1 and XG19 cells