C. Bordi and S. De-bentzmann, Hacking into bacterial biofilms: a new therapeutic challenge, Annals of Intensive Care, vol.1, issue.1, p.19, 2011.
DOI : 10.1016/j.biomaterials.2010.12.015

URL : https://hal.archives-ouvertes.fr/hal-01458279

A. Lynch and G. Robertson, Bacterial and Fungal Biofilm Infections, Annual Review of Medicine, vol.59, issue.1, pp.415-428, 2008.
DOI : 10.1146/annurev.med.59.110106.132000

H. Flemming and J. Wingender, The biofilm matrix, Nature Reviews Microbiology, vol.79, pp.623-633, 2010.
DOI : 10.1038/nrmicro2415

D. Argenio, D. Gallagher, L. Berg, C. Manoil, and C. , Drosophila as a Model Host for Pseudomonas aeruginosa Infection, Journal of Bacteriology, vol.183, issue.4, pp.1466-1471, 2001.
DOI : 10.1128/JB.183.4.1466-1471.2001

M. Fauvarque, E. Bergeret, J. Chabert, D. Dacheux, and M. Satre, Role and activation of type III secretion system genes in Pseudomonas aeruginosa-induced Drosophila killing, Microbial Pathogenesis, vol.32, issue.6, pp.287-295, 2002.
DOI : 10.1006/mpat.2002.0504

G. Lau, B. Goumnerov, C. Walendziewicz, J. Hewitson, and W. Xiao, The Drosophila melanogaster Toll Pathway Participates in Resistance to Infection by the Gram-Negative Human Pathogen Pseudomonas aeruginosa, Infection and Immunity, vol.71, issue.7, pp.4059-4066, 2003.
DOI : 10.1128/IAI.71.7.4059-4066.2003

S. Mahajan-miklos, L. Rahme, and F. Ausubel, Elucidating the molecular mechanisms of bacterial virulence using non-mammalian hosts, Molecular Microbiology, vol.11, issue.473, pp.981-988, 2000.
DOI : 10.1073/pnas.93.19.10434

A. Rodrigue, Y. Quentin, A. Lazdunski, V. Mejean, and M. Foglino, Cell signalling by oligosaccharides. Two-component systems in Pseudomonas aeruginosa: why so many?, Trends in Microbiology, vol.8, issue.11, pp.498-504, 2000.
DOI : 10.1016/S0966-842X(00)01833-3

J. He, R. Baldini, E. Deziel, M. Saucier, and Q. Zhang, The broad host range pathogen Pseudomonas aeruginosa strain PA14 carries two pathogenicity islands harboring plant and animal virulence genes, Proceedings of the National Academy of Sciences, vol.101, issue.8, pp.2530-2535, 2004.
DOI : 10.1073/pnas.0304622101

P. Roy, S. Tetu, A. Larouche, L. Elbourne, and S. Tremblay, Complete Genome Sequence of the Multiresistant Taxonomic Outlier Pseudomonas aeruginosa PA7, PLoS ONE, vol.5, issue.1, p.8842, 2010.
DOI : 10.1371/journal.pone.0008842.s002

I. Ventre, A. Goodman, I. Vallet-gely, P. Vasseur, and C. Soscia, Multiple sensors control reciprocal expression of Pseudomonas aeruginosa regulatory RNA and virulence genes, Proceedings of the National Academy of Sciences, vol.103, issue.1, pp.171-176, 2006.
DOI : 10.1073/pnas.0507407103

A. Goodman, B. Kulasekara, A. Rietsch, D. Boyd, and R. Smith, A Signaling Network Reciprocally Regulates Genes Associated with Acute Infection and Chronic Persistence in Pseudomonas aeruginosa, Developmental Cell, vol.7, issue.5, pp.745-754, 2004.
DOI : 10.1016/j.devcel.2004.08.020

C. Bordi, M. Lamy, I. Ventre, E. Termine, and A. Hachani, Regulatory RNAs and the HptB/RetS signalling pathways fine-tune Pseudomonas aeruginosa pathogenesis, Molecular Microbiology, vol.48, issue.6, pp.1427-1443, 2010.
DOI : 10.1111/j.1365-2958.2010.07146.x

O. Petrova and K. Sauer, The Novel Two-Component Regulatory System BfiSR Regulates Biofilm Development by Controlling the Small RNA rsmZ through CafA, Journal of Bacteriology, vol.192, issue.20, pp.5275-5288, 2010.
DOI : 10.1128/JB.00387-10

O. Petrova and K. Sauer, A Novel Signaling Network Essential for Regulating Pseudomonas aeruginosa Biofilm Development, PLoS Pathogens, vol.1, issue.11, p.1000668, 2009.
DOI : 10.1371/journal.ppat.1000668.s008

H. Kulasekara, I. Ventre, B. Kulasekara, A. Lazdunski, and A. Filloux, A novel two-component system controls the expression of Pseudomonas aeruginosa fimbrial cup genes, Molecular Microbiology, vol.4, issue.Pt 10, pp.368-380, 2005.
DOI : 10.1111/j.1365-2958.2004.04402.x

M. Sivaneson, H. Mikkelsen, I. Ventre, C. Bordi, and A. Filloux, Two-component regulatory systems in Pseudomonas aeruginosa: an intricate network mediating fimbrial and efflux pump gene expression, Molecular Microbiology, vol.105, issue.5, pp.1353-1366, 2011.
DOI : 10.1111/j.1365-2958.2010.07527.x

URL : https://hal.archives-ouvertes.fr/hal-01458271

H. Mikkelsen, G. Ball, C. Giraud, and A. Filloux, Expression of Pseudomonas aeruginosa CupD Fimbrial Genes Is Antagonistically Controlled by RcsB and the EAL-Containing PvrR Response Regulators, PLoS ONE, vol.4, issue.6, p.6018, 2009.
DOI : 10.1371/journal.pone.0006018.s001

C. Giraud and S. De-bentzmann, Inside the complex regulation of Pseudomonas aeruginosa chaperone usher systems, Environmental Microbiology, vol.47, issue.8, pp.1805-1816, 2012.
DOI : 10.1111/j.1462-2920.2011.02673.x

URL : https://hal.archives-ouvertes.fr/hal-01458243

Y. Wang, U. Ha, L. Zeng, and J. S. , Regulation of Membrane Permeability by a Two-Component Regulatory System in Pseudomonas aeruginosa, Antimicrobial Agents and Chemotherapy, vol.47, issue.1, pp.95-101, 2003.
DOI : 10.1128/AAC.47.1.95-101.2003

C. Giraud, C. Bernard, S. Ruer, and S. De-bentzmann, Biological ???glue??? and ???Velcro???: molecular tools for adhesion and biofilm formation in the hairy and gluey bug Pseudomonas aeruginosa, Environmental Microbiology Reports, vol.4, issue.3, pp.343-358, 2010.
DOI : 10.1111/j.1758-2229.2009.00070.x

C. Bernard, C. Bordi, E. Termine, A. Filloux, and S. De-bentzmann, Organization and PprB-Dependent Control of the Pseudomonas aeruginosa tad Locus, Involved in Flp Pilus Biology, Journal of Bacteriology, vol.191, issue.6, pp.1961-1973, 2009.
DOI : 10.1128/JB.01330-08

C. Giraud, C. Bernard, V. Calderon, L. Yang, and A. Filloux, The PprA-PprB two-component system activates CupE, the first non-archetypal Pseudomonas aeruginosa chaperone-usher pathway system assembling fimbriae, Environmental Microbiology, vol.34, issue.3, pp.666-683, 2011.
DOI : 10.1111/j.1462-2920.2010.02372.x

URL : https://hal.archives-ouvertes.fr/hal-00557837

H. Mulcahy, C. Sibley, M. Surette, and S. Lewenza, Drosophila melanogaster as an Animal Model for the Study of Pseudomonas aeruginosa Biofilm Infections In Vivo, PLoS Pathogens, vol.188, issue.10, p.1002299, 2011.
DOI : 10.1371/journal.ppat.1002299.s005

S. Limmer, S. Haller, E. Drenkard, J. Lee, and S. Yu, Pseudomonas aeruginosa RhlR is required to neutralize the cellular immune response in a Drosophila melanogaster oral infection model, Proceedings of the National Academy of Sciences, vol.108, issue.42, pp.17378-17383, 2011.
DOI : 10.1073/pnas.1114907108

A. Avet-rochex, E. Bergeret, I. Attree, M. Meister, and M. Fauvarque, Suppression of Drosophila cellular immunity by directed expression of the ExoS toxin GAP domain of Pseudomonas aeruginosa, Cellular Microbiology, vol.67, issue.6, pp.799-810, 2005.
DOI : 10.1016/S1369-5274(02)00294-1

URL : https://hal.archives-ouvertes.fr/hal-00378752

Y. Apidianakis, M. Mindrinos, X. W. Lau, G. Baldini, and R. , Profiling early infection responses: Pseudomonas aeruginosa eludes host defenses by suppressing antimicrobial peptide gene expression, Proceedings of the National Academy of Sciences, vol.102, issue.7, pp.2573-2578, 2005.
DOI : 10.1073/pnas.0409588102

L. Zhang and T. Mah, Involvement of a Novel Efflux System in Biofilm-Specific Resistance to Antibiotics, Journal of Bacteriology, vol.190, issue.13, pp.4447-4452, 2008.
DOI : 10.1128/JB.01655-07

E. Stabb, K. Reich, and E. Ruby, Vibrio fischeri Genes hvnA and hvnB Encode Secreted NAD+-Glycohydrolases, Journal of Bacteriology, vol.183, issue.1, pp.309-317, 2001.
DOI : 10.1128/JB.183.1.309-317.2001

S. Hinsa, M. Espinosa-urgel, J. Ramos, O. Toole, and G. , Transition from reversible to irreversible attachment during biofilm formation by Pseudomonas fluorescens WCS365 requires an ABC transporter and a large secreted protein, Molecular Microbiology, vol.46, issue.4, pp.905-918, 2003.
DOI : 10.1046/j.1365-2958.2003.03615.x

M. Espinosa-urgel, A. Salido, and J. Ramos, Genetic Analysis of Functions Involved in Adhesion of Pseudomonas putida to Seeds, Journal of Bacteriology, vol.182, issue.9, pp.2363-2369, 2000.
DOI : 10.1128/JB.182.9.2363-2369.2000

M. Martinez-gil, F. Yousef-coronado, and M. Espinosa-urgel, LapF, the second largest Pseudomonas putida protein, contributes to plant root colonization and determines biofilm architecture, Molecular Microbiology, vol.288, issue.3, pp.549-561, 2010.
DOI : 10.1111/j.1365-2958.2010.07249.x

C. Latasa, A. Roux, A. Toledo-arana, J. Ghigo, and C. Gamazo, BapA, a large secreted protein required for biofilm formation and host colonization of Salmonella enterica serovar Enteritidis, Molecular Microbiology, vol.39, issue.5, pp.1322-1339, 2005.
DOI : 10.1111/j.1365-2958.2005.04907.x

C. Latasa, C. Solano, J. Penades, and I. Lasa, Biofilm-associated proteins, Comptes Rendus Biologies, vol.329, issue.11, pp.849-857, 2006.
DOI : 10.1016/j.crvi.2006.07.008

C. Fuqua, Passing the baton between laps: adhesion and cohesion in Pseudomonas putida biofilms, Molecular Microbiology, vol.158, issue.3, pp.533-536, 2010.
DOI : 10.1111/j.1365-2958.2010.07250.x

K. Colvin, Y. Irie, C. Tart, R. Urbano, and J. Whitney, The Pel and Psl polysaccharides provide Pseudomonas aeruginosa structural redundancy within the biofilm matrix, Environmental Microbiology, vol.96, issue.8, pp.1913-1941, 2011.
DOI : 10.1111/j.1462-2920.2011.02657.x

M. Allesen-holm, K. Barken, L. Yang, M. Klausen, and J. Webb, A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms, Molecular Microbiology, vol.156, issue.4, pp.1114-1128, 2006.
DOI : 10.1126/science.295.5559.1487

D. Dominiak, J. Nielsen, and P. Nielsen, Extracellular DNA is abundant and important for microcolony strength in mixed microbial biofilms, Environmental Microbiology, vol.27, issue.3, pp.710-721, 2011.
DOI : 10.1111/j.1462-2920.2010.02375.x

L. Debarbieux and C. Wandersman, Folded HasA inhibits its own secretion through its ABC exporter, The EMBO Journal, vol.20, issue.17, pp.4657-4663, 2001.
DOI : 10.1093/emboj/20.17.4657

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC125584

K. Zakikhany, C. Harrington, M. Nimtz, J. Hinton, and U. Romling, Unphosphorylated CsgD controls biofilm formation in Salmonella enterica serovar Typhimurium, Molecular Microbiology, vol.39, issue.3, pp.771-786, 2010.
DOI : 10.1111/j.1365-2958.2010.07247.x

U. Romling, M. Rohde, A. Olsen, S. Normark, and J. Reinkoster, AgfD, the checkpoint of multicellular and aggregative behaviour in Salmonella typhimurium regulates at least two independent pathways, Molecular Microbiology, vol.32, issue.1, pp.10-23, 2000.
DOI : 10.1073/pnas.96.7.4028

P. Newell, R. Monds, O. Toole, and G. , LapD is a bis-(3',5')-cyclic dimeric GMP-binding protein that regulates surface attachment by Pseudomonas fluorescens Pf0-1, Proceedings of the National Academy of Sciences, vol.106, issue.9, pp.3461-3466, 2009.
DOI : 10.1073/pnas.0808933106

H. Kulasakara, V. Lee, A. Brencic, N. Liberati, and J. Urbach, Analysis of Pseudomonas aeruginosa diguanylate cyclases and phosphodiesterases reveals a role for bis-(3'-5')-cyclic-GMP in virulence, Proceedings of the National Academy of Sciences, vol.103, issue.8, pp.2839-2844, 2006.
DOI : 10.1073/pnas.0511090103

B. Borlee, A. Goldman, K. Murakami, R. Samudrala, and D. Wozniak, uses a cyclic-di-GMP-regulated adhesin to reinforce the biofilm extracellular matrix, Molecular Microbiology, vol.9, issue.4, pp.827-842, 2010.
DOI : 10.1111/j.1365-2958.2009.06991.x

L. Yang, M. Nilsson, M. Gjermansen, M. Givskov, and T. Tolker-nielsen, Pyoverdine and PQS mediated subpopulation interactions involved in Pseudomonas aeruginosa biofilm formation, Molecular Microbiology, vol.153, issue.6, pp.1380-1392, 2009.
DOI : 10.1111/j.1365-2958.2009.06934.x

C. Santaella, M. Schue, O. Berge, T. Heulin, and W. Achouak, roots but contributes to root colonization, Environmental Microbiology, vol.88, issue.8, pp.2150-2163, 2008.
DOI : 10.1111/j.1462-2920.2008.01650.x

S. De-bentzmann and P. Plesiat, The Pseudomonas aeruginosa opportunistic pathogen and human infections, Environmental Microbiology, vol.7, issue.7, pp.1655-1665, 2011.
DOI : 10.1111/j.1462-2920.2011.02469.x

G. Singh, B. Wu, M. Baek, A. Camargo, and A. Nguyen, Secretion of Pseudomonas aeruginosa type III cytotoxins is dependent on pseudomonas quinolone signal concentration, Microbial Pathogenesis, vol.49, issue.4, pp.196-203, 2010.
DOI : 10.1016/j.micpath.2010.05.013

K. Reich and G. Schoolnik, Halovibrin, secreted from the light organ symbiont Vibrio fischeri, is a member of a new class of ADP-ribosyltransferases., Journal of Bacteriology, vol.178, issue.1, pp.209-215, 1996.
DOI : 10.1128/jb.178.1.209-215.1996

T. Karasawa, K. Yamakawa, D. Tanaka, Y. Gyobu, and S. Nakamura, -glycohydrolase productivity of haemolytic streptococci assayed by a simple fluorescent method and its relation to T serotype, FEMS Microbiology Letters, vol.128, issue.3, pp.289-292, 1995.
DOI : 10.1111/j.1574-6968.1995.tb07538.x

URL : https://hal.archives-ouvertes.fr/hal-00571665

D. Stewart-tull, R. Ollar, and T. Scobie, Studies on the Vibrio cholerae mucinase complex. I. Enzymic activities associated with the complex325, Journal of Medical Microbiology, vol.22, issue.4, pp.325-333, 1986.
DOI : 10.1099/00222615-22-4-325

S. Bernier, S. Letoffe, M. Delepierre, and J. Ghigo, Biogenic ammonia modifies antibiotic resistance at a distance in physically separated bacteria, Molecular Microbiology, vol.43, issue.50, pp.705-716, 2011.
DOI : 10.1111/j.1365-2958.2011.07724.x

M. Chattopadhyay, C. Tabor, and H. Tabor, Polyamines protect Escherichia coli cells from the toxic effect of oxygen, Proceedings of the National Academy of Sciences, vol.100, issue.5, pp.2261-2265, 2003.
DOI : 10.1073/pnas.2627990100

L. Yang, M. Rau, N. Hoiby, S. Molin, and L. Jelsbak, Bacterial adaptation during chronic infection revealed by independent component analysis of transcriptomic data, BMC Microbiology, vol.11, issue.1, p.184, 2011.
DOI : 10.1146/annurev.mi.40.100186.000455

B. Koch, L. Jensen, and O. Nybroe, A panel of Tn7-based vectors for insertion of the gfp marker gene or for delivery of cloned DNA into Gram-negative bacteria at a neutral chromosomal site, Journal of Microbiological Methods, vol.45, issue.3, pp.187-195, 2001.
DOI : 10.1016/S0167-7012(01)00246-9

A. Reisner, J. Haagensen, M. Schembri, E. Zechner, and S. Molin, Development and maturation of Escherichia coli K-12 biofilms, Molecular Microbiology, vol.97, issue.4, pp.933-946, 2003.
DOI : 10.1046/j.1365-2958.2003.03490.x

Y. Apidianakis and L. Rahme, Drosophila melanogaster as a model for human intestinal infection and pathology, Disease Models & Mechanisms, vol.4, issue.1, pp.21-30, 2011.
DOI : 10.1242/dmm.003970

J. Goure, A. Pastor, E. Faudry, J. Chabert, and A. Dessen, The V Antigen of Pseudomonas aeruginosa Is Required for Assembly of the Functional PopB/PopD Translocation Pore in Host Cell Membranes, Infection and Immunity, vol.72, issue.8, pp.4741-4750, 2004.
DOI : 10.1128/IAI.72.8.4741-4750.2004