J. G. Hall, Arthrogryposis Multiplex Congenita, Journal of Pediatric Orthopaedics B, vol.6, issue.3, pp.159-166, 1997.
DOI : 10.1097/01202412-199707000-00002

M. Bamshad, L. B. Jorde, and J. C. Carey, A revised and extended classification of the distal arthrogryposes, American Journal of Medical Genetics, vol.53, issue.4, pp.277-281, 1996.
DOI : 10.1002/(SICI)1096-8628(19961111)65:4<277::AID-AJMG6>3.0.CO;2-M

M. Bamshad, A. E. Van-heest, and D. Pleasure, Arthrogryposis: A Review and Update, The Journal of Bone and Joint Surgery-American Volume, vol.91, issue.Suppl 4, pp.40-46, 2009.
DOI : 10.2106/JBJS.I.00281

A. Oldfors, Hereditary myosin myopathies, Neuromuscular Disorders, vol.17, issue.5, pp.355-367, 2007.
DOI : 10.1016/j.nmd.2007.02.008

R. M. Toydemir, A. Rutherford, F. G. Whitby, L. B. Jorde, J. C. Carey et al., Mutations in embryonic myosin heavy chain (MYH3) cause Freeman-Sheldon syndrome and Sheldon-Hall syndrome, Nature Genetics, vol.261, issue.5, pp.561-565, 2006.
DOI : 10.1006/jmbi.1994.0070

C. A. Gurnett, D. M. Desruisseau, K. Mccall, R. Choi, Z. I. Meyer et al., Myosin binding protein C1: a novel gene for autosomal dominant distal arthrogryposis type 1, Human Molecular Genetics, vol.19, issue.7, pp.1165-1173, 2010.
DOI : 10.1093/hmg/ddp587

S. S. Sung, A. M. Brassington, K. Grannatt, A. Rutherford, F. G. Whitby et al., Mutations in Genes Encoding Fast-Twitch Contractile Proteins Cause Distal Arthrogryposis Syndromes, The American Journal of Human Genetics, vol.72, issue.3, pp.681-690, 2003.
DOI : 10.1086/368294

S. S. Sung, A. M. Brassington, P. A. Krakowiak, L. B. Jorde, and M. Bamshad, Mutations in TNNT3 Cause Multiple Congenital Contractures: A Second Locus for Distal Arthrogryposis Type 2B, The American Journal of Human Genetics, vol.73, issue.1, pp.212-214, 2003.
DOI : 10.1086/376418

J. Ochala, Thin filament proteins mutations associated with skeletal myopathies: Defective regulation of muscle contraction, Journal of Molecular Medicine, vol.81, issue.11, pp.1197-1204, 2008.
DOI : 10.1007/s00109-008-0380-9

N. G. Laing, D. E. Dye, C. Wallgren-pettersson, G. Richard, N. Monnier et al., ), Human Mutation, vol.73, issue.9, pp.1267-1277, 2009.
DOI : 10.1002/humu.21059

M. W. Lawlor, C. A. Ottenheijm, V. L. Lehtokari, K. Cho, K. Pelin et al., Novel mutations in NEB cause abnormal nebulin expression and markedly impaired muscle force generation in severe nemaline myopathy, Skeletal Muscle, vol.1, issue.1, p.23, 2011.
DOI : 10.1073/pnas.83.10.3542

N. B. Romero, L. Monnier, L. Viollet, A. Cortay, M. Chevallay et al., Dominant and recessive central core disease associated with RYR1 mutations and fetal akinesia, Brain, vol.126, issue.11, pp.2341-2349, 2003.
DOI : 10.1093/brain/awg244

S. Riemersma, A. Vincent, D. Beeson, C. Newland, S. Hawke et al., Association of arthrogryposis multiplex congenital with maternal antibodies inhibiting fetal acetylcholine receptor function, J. Clin. Inves, vol.98, pp.2538-2563, 1996.

K. Hoffmann, J. S. Muller, S. Stricker, A. Megarbane, A. Rajab et al., Escobar Syndrome Is a Prenatal Myasthenia Caused by Disruption of the Acetylcholine Receptor Fetal ?? Subunit, The American Journal of Human Genetics, vol.79, issue.2, pp.303-312, 2006.
DOI : 10.1086/506257

N. V. Morgan, L. A. Brueton, P. Cox, M. T. Greally, J. Tolmie et al., Mutations in the Embryonal Subunit of the Acetylcholine Receptor (CHRNG) Cause Lethal and Escobar Variants of Multiple Pterygium Syndrome, The American Journal of Human Genetics, vol.79, issue.2, pp.390-395, 2006.
DOI : 10.1086/506256

J. Vogt, B. J. Harrison, H. Spearman, J. Cossins, S. Vermeer et al., Mutation Analysis of CHRNA1, CHRNB1, CHRND, and RAPSN Genes in Multiple Pterygium Syndrome/Fetal Akinesia Patients, The American Journal of Human Genetics, vol.82, issue.1, pp.222-227
DOI : 10.1016/j.ajhg.2007.09.016

S. Brownlow, R. Webster, R. Croxen, M. Brydson, B. Neville et al., Acetylcholine receptor ?? subunit mutations underlie a fast-channel myasthenic syndrome and arthrogryposis multiplex congenita, Journal of Clinical Investigation, vol.108, issue.1, pp.125-130, 2001.
DOI : 10.1172/JCI200112935

J. Vogt, N. V. Morgan, T. Marton, S. Maxwell, B. J. Harrison et al., Germline mutation in DOK7 associated with fetal akinesia deformation sequence, Journal of Medical Genetics, vol.46, issue.5, pp.338-340, 2009.
DOI : 10.1136/jmg.2008.065425

A. Michalk, S. Stricker, J. Becker, R. Rupps, T. Pantzar et al., Acetylcholine Receptor Pathway Mutations Explain Various Fetal Akinesia Deformation Sequence Disorders, The American Journal of Human Genetics, vol.82, issue.2, pp.464-476, 2008.
DOI : 10.1016/j.ajhg.2007.11.006

URL : http://doi.org/10.1016/j.ajhg.2007.11.006

O. Valdenaire, J. G. Richards, R. L. Faull, and A. Schweizer, XCE, a new member of the endothelin-converting enzyme and neutral endopeptidase family, is preferentially expressed in the CNS, Molecular Brain Research, vol.64, issue.2, pp.211-221, 1999.
DOI : 10.1016/S0169-328X(98)00321-0

S. Kiryu-seo, M. Sasaki, H. Yokohama, S. Nakagomi, T. Hirayama et al., Damage-induced neuronal endopeptidase (DINE) is a unique metallopeptidase expressed in response to neuronal damage and activates superoxide scavengers, Proc. Natl Acad. Sci. USA, pp.4345-4350, 2000.
DOI : 10.1073/pnas.070509897

Y. Zhang, S. M. Luoh, L. S. Hon, R. Baertsch, W. I. Wood et al., GeneHub-GEPIS: digital expression profiling for normal and cancer tissues based on an integrated gene database, Nucleic Acids Research, vol.35, issue.Web Server, pp.152-158, 2007.
DOI : 10.1093/nar/gkm381

O. Valdenaire, E. Rohrbacher, A. Langeveld, A. Schweizer, and C. Meijers, Organization and chromosomal localization of the human ECEL1 (XCE) gene encoding a zinc metallopeptidase involved in the nervous control of respiration, Biochemical Journal, vol.346, issue.3, pp.611-616, 2000.
DOI : 10.1042/bj3460611

K. Nagata, S. Kiryu-seo, and H. Kiyama, Localization and ontogeny of damage-induced neuronal endopeptidase mRNA-expressing neurons in the rat nervous system, Neuroscience, vol.141, issue.1, pp.299-310, 2006.
DOI : 10.1016/j.neuroscience.2006.03.032

C. Oefner, A. D-'arcy, M. Hennig, F. K. Winkler, and G. E. Dale, Structure of human neutral endopeptidase (neprilysin) complexed with phosphoramidon, Journal of Molecular Biology, vol.296, issue.2, pp.341-349, 2000.
DOI : 10.1006/jmbi.1999.3492

C. Oefner, B. P. Roques, M. C. Fournie-zaluski, and G. E. Dale, Structural analysis of neprilysin with various specific and potent inhibitors, Acta Crystallographica Section D Biological Crystallography, vol.60, issue.2, pp.392-396, 2004.
DOI : 10.1107/S0907444903027410

C. Oefner, S. Pierau, H. Schulz, and G. E. Dale, Structural studies of a bifunctional inhibitor of neprilysin and DPP-IV, Acta Crystallographica Section D Biological Crystallography, vol.63, issue.9, pp.975-981, 2007.
DOI : 10.1107/S0907444907036281

A. Benoit, M. A. Vargas, L. Desgroseillers, and G. Boileau, Endothelin-converting enzyme-like 1 (ECEL1) is present both in the plasma membrane and in the endoplasmic reticulum, Biochemical Journal, vol.380, issue.3, pp.881-888, 2004.
DOI : 10.1042/bj20040215

E. Mercuri, M. Rutherford, A. Barnett, C. Foglia, L. Haataja et al., MRI Lesions and Infants with Neonatal Encephalopathy. Is the Apgar Score Predictive?, Neuropediatrics, vol.33, issue.3, pp.150-156, 2002.
DOI : 10.1055/s-2002-33412

M. E. Farrugia, M. D. Robson, L. Clover, P. Anslow, J. Newsom-davis et al., MRI and clinical studies of facial and bulbar muscle involvement in MuSK antibody-associated myasthenia gravis, Brain, vol.129, issue.6, pp.1481-1492, 2006.
DOI : 10.1093/brain/awl095

N. D. Bland, J. W. Pinney, J. E. Thomas, A. J. Turner, and R. E. Isaac, Bioinformatic analysis of the neprilysin (M13) family of peptidases reveals complex evolutionary and functional relationships, BMC Evolutionary Biology, vol.8, issue.1, p.16, 2008.
DOI : 10.1186/1471-2148-8-16

P. Nicholson, H. Yepiskoposyan, S. Metze, Z. Orozco, R. Kleinschmidt et al., Nonsense-mediated mRNA decay in human cells: mechanistic insights, functions beyond quality control and the double-life of NMD factors, Cellular and Molecular Life Sciences, vol.2, issue.5, pp.677-700, 2010.
DOI : 10.1007/s00018-009-0177-1

R. Grantham, Amino Acid Difference Formula to Help Explain Protein Evolution, Science, vol.185, issue.4154, pp.862-864, 1974.
DOI : 10.1126/science.185.4154.862

K. J. Macleod, R. S. Fuller, J. D. Scholten, and K. Ahn, Conserved Cysteine and Tryptophan Residues of the Endothelin-converting Enzyme-1 CXAW Motif Are Critical for Protein Maturation and Enzyme Activity, Journal of Biological Chemistry, vol.276, issue.33, pp.30608-30614, 2001.
DOI : 10.1074/jbc.M103928200

P. H. Dixon, P. T. Christie, C. Wooding, D. Trump, M. Grieff et al., Mutational Analysis of PHEX Gene in X-Linked Hypophosphatemia, Journal of Clinical Endocrinology & Metabolism, vol.83, issue.10, pp.3615-3623, 1998.
DOI : 10.1210/jc.83.10.3615

D. Filisetti, G. Ostermann, M. Von-bredow, T. Strom, G. Filler et al., Non-random distribution of mutations in the PHEX gene, and under-detected missense mutations at non-conserved residues, European Journal of Human Genetics, vol.7, issue.5, pp.615-619, 1999.
DOI : 10.1038/sj.ejhg.5200341

H. Tyynismaa, I. Kaitila, K. Näntö-salonen, M. Ala-houhala, and T. Alitalo, Identification of fifteen novel PHEX gene mutations in Finnish patients with hypophosphatemic rickets, Human Mutation, vol.15, issue.4, pp.383-384, 2000.
DOI : 10.1002/(SICI)1098-1004(200004)15:4<383::AID-HUMU18>3.0.CO;2-#

K. Nagata, S. Kiryu-seo, M. Maeda, K. Yoshida, T. Morita et al., Damage-Induced Neuronal Endopeptidase Is Critical for Presynaptic Formation of Neuromuscular Junctions, Journal of Neuroscience, vol.30, issue.20, pp.6954-6962, 2010.
DOI : 10.1523/JNEUROSCI.4521-09.2010

A. Schweizer, O. Valdenaire, A. Köster, Y. Lang, G. Schmitt et al., Neonatal Lethality in Mice Deficient in XCE, a Novel Member of the Endothelin-converting Enzyme and Neutral Endopeptidase Family, Journal of Biological Chemistry, vol.274, issue.29, pp.20450-20456, 1999.
DOI : 10.1074/jbc.274.29.20450

M. Mishina, T. Takai, K. Imoto, M. Noda, T. Takahashi et al., Molecular distinction between fetal and adult forms of muscle acetylcholine receptor, Nature, vol.75, issue.6068, pp.406-411, 1986.
DOI : 10.1038/321406a0

L. F. Hesselmans, F. G. Jennekens, C. J. Van-den-oord, H. Veldman, and A. Vincent, Development of innervation of skeletal muscle fibers in man: Relation to acetylcholine receptors, The Anatomical Record, vol.95, issue.3, pp.553-562, 1993.
DOI : 10.1002/ar.1092360315

A. Rump, G. Kasper, C. Hayes, G. Wen, H. Starke et al., Complex Arrangement of Genes within a 220-kb Region of Double-Duplicated DNA on Human 2q37.1, Genomics, vol.73, issue.1, pp.50-55, 2001.
DOI : 10.1006/geno.2000.6504

F. Ruschendorf and P. Nurnberg, ALOHOMORA: a tool for linkage analysis using 10K SNP array data, Bioinformatics, vol.21, issue.9, pp.2123-2125, 2005.
DOI : 10.1093/bioinformatics/bti264

G. R. Abecasis, S. S. Cherny, W. O. Cookson, and L. R. Cardon, Merlin???rapid analysis of dense genetic maps using sparse gene flow trees, Nature Genetics, vol.30, issue.1, pp.97-101, 2002.
DOI : 10.1038/ng786

M. Jarraya, S. Quijano-roy, N. Monnier, A. Béhin, D. Avila-smirnov et al., Whole-Body muscle MRI in a series of patients with congenital myopathy related to TPM2 gene mutations, Neuromuscular Disorders, vol.22, pp.137-147, 2012.
DOI : 10.1016/j.nmd.2012.06.347

J. A. Bevilacqua, N. Monnier, M. Bitoun, B. Eymard, A. Ferreiro et al., Recessive RYR1 mutations cause unusual congenital myopathy with prominent nuclear internalization and large areas of myofibrillar disorganization, Neuropathology and Applied Neurobiology, vol.19, issue.3, pp.271-284, 2011.
DOI : 10.1111/j.1365-2990.2010.01149.x

URL : https://hal.archives-ouvertes.fr/inserm-00639292

T. Tidswell and M. C. Pitt, A new analytical method to diagnose congenital myasthenia with stimulated single-fiber electromyography, Muscle & Nerve, vol.26, issue.1, pp.107-110, 2007.
DOI : 10.1002/mus.20637