E. Sánchez, A. Mejía-toiber, J. Massieu, and L. , Excitotoxic Neuronal Death and the Pathogenesis of Huntington's Disease, Archives of Medical Research, vol.39, issue.3, pp.265-276, 2008.
DOI : 10.1016/j.arcmed.2007.11.011

A. Southwell, J. Ko, and P. Patterson, Intrabody Gene Therapy Ameliorates Motor, Cognitive, and Neuropathological Symptoms in Multiple Mouse Models of Huntington's Disease, Journal of Neuroscience, vol.29, issue.43, pp.13589-13602, 2009.
DOI : 10.1523/JNEUROSCI.4286-09.2009

K. Murphy, R. Carter, L. Lione, L. Mangiarini, A. Mahal et al., Abnormal synaptic plasticity and impaired spatial cognition in mice transgenic for exon 1 of the human Huntington's disease mutation, J Neurosci, vol.20, pp.5115-5123, 2000.

Z. Demarch, C. Giampà, S. Patassini, G. Bernardi, and F. Fusco, Beneficial effects of rolipram in the R6/2 mouse model of Huntington's disease, Neurobiology of Disease, vol.30, issue.3, pp.375-387, 2008.
DOI : 10.1016/j.nbd.2008.02.010

N. Ende and R. Chen, Human umbilical cord blood cells ameliorate Huntington's disease in transgenic mice, J Med, vol.32, pp.231-240, 2001.

S. Lee, K. Chu, K. Jung, W. Im, J. Park et al., Slowed progression in models of huntington disease by adipose stem cell transplantation, Annals of Neurology, vol.110, issue.5, pp.671-681, 2009.
DOI : 10.1002/ana.21788

J. Rossignol, C. Boyer, X. Lévèque, K. Fink, R. Thinard et al., Mesenchymal stem cell transplantation and DMEM administration in a 3NP rat model of Huntington's disease: Morphological and behavioral outcomes, Behavioural Brain Research, vol.217, issue.2, pp.369-378, 2011.
DOI : 10.1016/j.bbr.2010.11.006

J. Rossignol, K. Fink, A. Crane, K. Davis, M. Bombard et al., Behavioral and neurolopathological sparing in the R6/2 mouse model of Huntington's disease following transplantation of bone-marrow-derived mesenchymal stem cells is dependent on passage number, Stem Cells Dev. In Review

F. Adegani, L. Langroudi, E. Arefian, A. Shafiee, P. Dinarvand et al., A comparison of pluripotency and differentiation status of four mesenchymal adult stem cells, Molecular Biology Reports, vol.52, issue.5, pp.3693-3703, 2013.
DOI : 10.1007/s11033-012-2445-7

M. Weiss and D. Troyer, Stem cells in the umbilical cord, Stem Cell Reviews, vol.27, issue.3, pp.155-162, 2006.
DOI : 10.1007/s12015-006-0022-y

S. Karahuseyinoglu, O. Cinar, E. Kilic, F. Kara, G. Akay et al., Biology of Stem Cells in Human Umbilical Cord Stroma: In Situ and In Vitro Surveys, Stem Cells, vol.164, issue.2, pp.319-331, 2007.
DOI : 10.1634/stemcells.2006-0286

M. Manca, I. Zwart, J. Beo, R. Palasingham, L. Jen et al., Characterization of mesenchymal stromal cells derived from full-term umbilical cord blood, Cytotherapy, vol.10, issue.1, pp.54-68, 2008.
DOI : 10.1080/14653240701732763

J. Kurtzberg, A. Lyerly, and J. Sugarman, Untying the Gordian knot: policies, practices, and ethical issues related to banking of umbilical cord blood, Journal of Clinical Investigation, vol.115, issue.10, pp.2592-2597, 2005.
DOI : 10.1172/JCI26690

M. Laughlin, J. Barker, B. Bambach, O. Koc, D. Rizzieri et al., Hematopoietic engraftment and survival in adult recipients of umbilical-cord blood from unrelated donors, pp.1815-1822, 2001.

R. Carlin, D. Davis, M. Weiss, B. Schultz, and D. Troyer, Expression of early transcription factors Oct-4, Sox-2 and Nanog by porcine umbilical cord (PUC) matrix cells, Reproductive Biology and Endocrinology, vol.4, issue.1, p.8, 2006.
DOI : 10.1186/1477-7827-4-8

A. Bongso and C. Fong, The Therapeutic Potential, Challenges and Future Clinical Directions of Stem Cells from the Wharton???s Jelly of the Human Umbilical Cord, Stem Cell Reviews and Reports, vol.18, issue.2, pp.226-240
DOI : 10.1007/s12015-012-9418-z

C. Fong, M. Richards, N. Manasi, A. Biswas, and A. Bongso, Comparative growth behaviour and characterization of stem cells from human Wharton's jelly, Reproductive BioMedicine Online, vol.15, issue.6, pp.708-718, 2007.
DOI : 10.1016/S1472-6483(10)60539-1

Y. Fu, Y. Cheng, M. Lin, H. Cheng, P. Chu et al., Conversion of Human Umbilical Cord Mesenchymal Stem Cells in Wharton's Jelly to Dopaminergic Neurons In Vitro: Potential Therapeutic Application for Parkinsonism, Stem Cells, vol.73, issue.1, pp.115-124, 2006.
DOI : 10.1634/stemcells.2005-0053

Y. Fu, Y. Shih, Y. Cheng, and M. Min, Transformation of human umbilical mesenchymal cells into neurons in vitro, Journal of Biomedical Science, vol.416, issue.5, pp.652-660, 2004.
DOI : 10.1007/BF02256131

K. Mitchell, M. Weiss, B. Mitchell, P. Martin, D. Davis et al., Matrix Cells from Wharton's Jelly Form Neurons and Glia, STEM CELLS, vol.21, issue.1, pp.50-60, 2003.
DOI : 10.1634/stemcells.21-1-50

H. Wang, S. Hung, S. Peng, C. Huang, H. Wei et al., Mesenchymal Stem Cells in the Wharton's Jelly of the Human Umbilical Cord, Stem Cells, vol.74, issue.7, pp.1330-1337, 2004.
DOI : 10.1634/stemcells.2004-0013

S. Medicetty, A. Bledsoe, C. Fahrenholtz, D. Troyer, and M. Weiss, Transplantation of pig stem cells into rat brain: proliferation during the first 8 weeks, Experimental Neurology, vol.190, issue.1, pp.32-41, 2004.
DOI : 10.1016/j.expneurol.2004.06.023

D. Ding, W. Shyu, M. Chiang, S. Lin, Y. Chang et al., Enhancement of neuroplasticity through upregulation of ??1-integrin in human umbilical cord-derived stromal cell implanted stroke model, Neurobiology of Disease, vol.27, issue.3, pp.339-353, 2007.
DOI : 10.1016/j.nbd.2007.06.010

S. Koh, K. Kim, M. Choi, K. Jung, K. Park et al., Implantation of human umbilical cord-derived mesenchymal stem cells as a neuroprotective therapy for ischemic stroke in rats, Brain Research, vol.1229, pp.233-248, 2008.
DOI : 10.1016/j.brainres.2008.06.087

L. Zhang, Y. Li, C. Zhang, M. Chopp, A. Gosiewska et al., Delayed Administration of Human Umbilical Tissue-Derived Cells Improved Neurological Functional Recovery in a Rodent Model of Focal Ischemia, Stroke, vol.42, issue.5, pp.1437-1444, 2011.
DOI : 10.1161/STROKEAHA.110.593129

N. Ahmadbeigi, M. Soleimani, Y. Gheisari, M. Vasei, S. Amanpour et al., Dormant Phase and Multinuclear Cells: Two Key Phenomena in Early Culture of Murine Bone Marrow Mesenchymal Stem Cells, Stem Cells and Development, vol.20, issue.8, pp.1337-1347, 2011.
DOI : 10.1089/scd.2010.0266

J. Rossignol, C. Boyer, R. Thinard, R. S. Dugast, A. Dubayle et al., Mesenchymal stem cells induce a weak immune response in the rat striatum after allo or xenotransplantation, Journal of Cellular and Molecular Medicine, vol.15, issue.8b, pp.2547-2558, 2009.
DOI : 10.1111/j.1582-4934.2008.00657.x

L. Lescaudron, C. Boyer, V. Bonnamain, K. Fink, X. Lévêque et al., Assessing the Potential Clinical Utility of Transplantations of Neural and Mesenchymal Stem Cells for Treating Neurodegenerative Diseases, Methods Mol Biol, vol.879, pp.147-164, 2012.
DOI : 10.1007/978-1-61779-815-3_10

N. Dey, M. Bombard, B. Roland, S. Davidson, M. Lu et al., Genetically engineered mesenchymal stem cells reduce behavioral deficits in the YAC 128 mouse model of Huntington's disease, Behavioural Brain Research, vol.214, issue.2, pp.193-200, 2010.
DOI : 10.1016/j.bbr.2010.05.023

DOI : 10.1080/00207450390207759

C. Zuccato, M. Marullo, B. Vitali, A. Tarditi, C. Mariotti et al., Brain-Derived Neurotrophic Factor in Patients with Huntington's Disease, PLoS ONE, vol.100, issue.8, p.22966, 2011.
DOI : 10.1371/journal.pone.0022966.s004

T. Miki, Amnion-derived stem cells: in quest of clinical applications, Stem Cell Research & Therapy, vol.2, issue.3, p.25, 2011.
DOI : 10.1186/1472-6939-10-12

J. Peng and X. Zeng, The role of induced pluripotent stem cells in regenerative medicine: neurodegenerative diseases, Stem Cell Research & Therapy, vol.2, issue.4, p.32, 2011.
DOI : 10.1038/nature09798

K. Fink, J. Rossignol, M. Lu, X. Leveque, T. Hulse et al., Survival and Differentiation of Adenovirus-Generated Induced Pluripotent Stem Cells Transplanted Into the Rat Striatum, Cell Transplantation, vol.23, issue.11
DOI : 10.3727/096368913X670958