R. Kessler, P. Berglund, and O. Demler, The Epidemiology of Major Depressive Disorder, JAMA, vol.289, issue.23, pp.3095-105, 2001.
DOI : 10.1001/jama.289.23.3095

B. Mitterauer, D. Cotter, D. Mackay, and S. Landau, The Astrocentric Hypothesis: proposed role of astrocytes in consciousness and memory formation Reduced glial cell density and neuronal size in the anterior cingulate cortex in major depressive disorder Glial reduction in the subgenual prefrontal cortex in mood disorders Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression Reduced neuronal size and glial cell density in area 9 of the dorsolateral prefrontal cortex in subjects with major depressive disorder Diseasespecific alterations in frontal cortex brain proteins in schizophrenia, bipolar disorder, and major depressive disorder. The Stanley Neuropathology Consortium, Glial fibrillary acidic protein immunoreactivity in the prefrontal cortex distinguishes younger from older adults in major depressive disorder, pp.101-123, 1998.

X. Si, J. Miguel-hidalgo, O. Dwyer, and G. , Age-dependent reductions in the level of glial fibrillary acidic protein in the prefrontal cortex in major depression Altered cortical glutamatergic and GABAergic signal transmission with glial involvement in depression, Neuropsychopharmacology Proc Natl Acad Sci U S A, vol.29, issue.10243, pp.2088-96, 2004.

B. Czeh, M. Simon, and B. Schmelting, Astroglial plasticity in the hippocampus is affected by chronic psychosocial stress and concomitant fluoxetine treatment Chronic social stress inhibits cell proliferation in the adult medial prefrontal cortex: hemispheric asymmetry and reversal by fluoxetine treatment Chronic unpredictable stress decreases cell proliferation in the cerebral cortex of the adult rat Gap junction dysfunction in the prefrontal cortex induces depressive-like behaviors in rats Glial loss in the prefrontal cortex is sufficient to induce depressive-like behaviors, Neuropsychopharmacology Neuropsychopharmacology Biol Psychiatry Neuropsychopharmacology Biol Psychiatry Glia, vol.31202124, issue.241, pp.1616-1642, 1998.

E. Dere, A. Zlomuzica, C. Frisch, M. Theis, D. Souza-silva et al., The role of gap junctions in the brain in health and disease Mice with astrocytedirected inactivation of connexin43 exhibit increased exploratory behaviour, impaired motor capacities, and changes in brain acetylcholine levels, Neurosci Biobehav Rev Eur J Neurosci, vol.3626, issue.188, pp.206-223, 2003.

L. Irwin, J. Gray, N. Mcnaughton, R. Muscat, M. Papp et al., The Neuropsychology of Anxiety Reversal of stress-induced anhedonia by the atypical antidepressants, fluoxetine and maprotiline New roles for astrocytes: redefining the functional architecture of the brain Quantitative cytoarchitectonic distribution of neurons, glia, and DNa in rat cerebral cortex Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains, Gene expression in the hippocampus of behaviorally stimulated rats: analysis by DNA microarray. [32] Halassa MM, Haydon PG. Integrated brain circuits: astrocytic networks modulate neuronal activity and behavior, pp.163-172, 1971.

C. Giaume, A. Koulakoff, and L. Roux, Astroglial networks: a step further in neuroglial and gliovascular interactions Three-dimensional relationships between hippocampal synapses and astrocytes Astrocytic complexity distinguishes the human brain, [36] Kimelberg HK, Nedergaard M. Functions of astrocytes and their potential as therapeutic targets, pp.87-99, 1999.

N. Laping, B. Teter, and N. Nichols, Glial Fibrillary Acidic Protein: Regulation by Hormones, Cytokines, and Growth Factors, Brain Pathology, vol.4, issue.3, pp.259-75, 1994.
DOI : 10.1016/0169-328X(90)90078-R

P. N. Magistretti, P. Magistretti, L. Pellerin, and D. Rothman, Energy on demand [40] Barres BA. Glial ion channels [41] Sontheimer H. Voltage-dependent ion channels in glial cells Astrocytes, from brain glue to communication elements: the revolution continues, J Exp Biol Science Curr Opin Neurobiol Glia Nat Rev Neurosci, vol.209, issue.68, pp.2304-2315, 1991.

S. Murphy, P. B. Porter, J. Mccarthy, and K. , Functional receptors for neurotransmitters on astroglial cells Astrocytic neurotransmitter receptors in situ and in vivo, Neuroscience Prog Neurobiol, vol.22, issue.514, pp.381-94, 1987.

A. Cornell-bell, S. Finkbeiner, and M. Cooper, Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling Glutamate-mediated astrocyte-neuron signalling, [47] Nedergaard M. Direct signaling from astrocytes to neurons in cultures of mammalian brain cells, pp.470-473, 1990.

C. Agulhon, J. Petravicz, and A. Mcmullen, What is the role of astrocyte calcium in neurophysiology Properties of synaptically evoked astrocyte calcium signal reveal synaptic information processing by astrocytes Localization of neuronal and glial glutamate transporters, Neuron J Neurosci Neuron, vol.595051, issue.133, pp.932-978, 1994.

Q. Wu, M. Wada, and A. Shimada, Functional characterization of Zn2+-sensitive GABA transporter expressed in primary cultures of astrocytes from rat cerebral cortex, Brain Research, vol.1075, issue.1, pp.100-109, 2006.
DOI : 10.1016/j.brainres.2005.12.109

N. Bal, G. Figueras, and M. Vilaro, Antidepressant drugs inhibit a glial 5-hydroxytryptamine transporter in rat brain Astroglial dopamine transport is mediated by norepinephrine transporter Expression and functional characterization of the extraneuronal monoamine transporter in normal human astrocytes Serotonin metabolism by monoamine oxidase in rat primary astrocyte cultures Immunocytochemical demonstration of monoamine oxidase B in brain astrocytes and serotonergic neurons, Eur J Neurosci Naunyn Schmiedebergs Arch Pharmacol J Neurochem J Neurochem Proc Natl Acad Sci U S A Neuroscience, vol.9555758, issue.252, pp.1728-1766, 1982.

A. Araque, V. Parpura, and R. Sanzgiri, Tripartite synapses: glia, the unacknowledged partner, Trends in Neurosciences, vol.22, issue.5, pp.208-223, 1999.
DOI : 10.1016/S0166-2236(98)01349-6

T. Sasaki, N. Kuga, and S. Namiki, Locally Synchronized Astrocytes, Cerebral Cortex, vol.21, issue.8, pp.1889-900, 2011.
DOI : 10.1093/cercor/bhq256

URL : http://cercor.oxfordjournals.org/cgi/content/short/21/8/1889

A. Araque, G. Carmignoto, and P. Haydon, Dynamic Signaling Between Astrocytes and Neurons, Annual Review of Physiology, vol.63, issue.1, pp.795-81361, 2001.
DOI : 10.1146/annurev.physiol.63.1.795

P. Bezzi, M. Domercq, and S. Vesce, Tripartite synapses: astrocytes process and control synaptic information Gliotransmission and the tripartite synapse Truncated TrkB-T1 mediates neurotrophin-evoked calcium signalling in glia cells ATP released by astrocytes mediates glutamatergic activity-dependent heterosynaptic suppression ATP: an extracellular signaling molecule between neurons and glia, Prog Brain Res Trends Neurosci Adv Exp Med Biol Nature Neuron Trends Neurosci Neurochem Res, vol.132646668, issue.255, pp.255-65, 2000.

A. Araque, V. Parpura, and R. Sanzgiri, Glutamate-dependent astrocyte modulation of synaptic transmission between cultured hippocampal neurons Neuronal synchrony mediated by astrocytic glutamate through activation of extrasynaptic NMDA receptors, Eur J Neurosci Neuron, vol.106970, issue.435, pp.2129-2171, 1998.

M. Angulo, A. Kozlov, and S. Charpak, Glutamate released from glial cells synchronizes neuronal activity in the hippocampus Astrocytic purinergic signaling coordinates synaptic networks, J Neurosci Science, vol.2472, issue.3105745, pp.6920-6927, 2004.

E. Newman, Glial cell inhibition of neurons by release of ATP, J Neurosci, vol.2373, issue.5, pp.1659-66, 2003.

J. Mothet, L. Pollegioni, and G. Ouanounou, Glutamate receptor activation triggers a calcium-dependent and SNARE proteindependent release of the gliotransmitter D-serine, Proc Natl Acad Sci U S A, vol.10274, issue.15, pp.5606-5617, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00086056

J. Miyazaki, S. Nakanishi, and H. Jingami, Expression and characterization of a glycine-binding fragment of the N-methyl-D-aspartate receptor subunit NR1, Biochemical Journal, vol.340, issue.3, pp.687-92, 1999.
DOI : 10.1042/bj3400687

J. Johnson, P. Ascher, N. Kleckner, R. Dingledine, D. Theodosis et al., Requirement for glycine in activation of NMDA-receptors expressed in Xenopus oocytes Glia-derived D-serine controls NMDA receptor activity and synaptic memory D-serine is an endogenous ligand for the glycine site of the N-methyl-D-aspartate receptor, Nature Science Cell Proc Natl Acad Sci, vol.3257879, issue.979, pp.529-560, 1987.

H. Wolosker, NMDA Receptor Regulation by D-serine: New Findings and Perspectives, Molecular Neurobiology, vol.385, issue.1???3, pp.152-64, 2007.
DOI : 10.1007/s12035-007-0038-6

B. Achour, S. Pascual, O. Nestler, E. Barrot, M. Dileone et al., Astrocyte-neuron communication: functional consequences [81] Schildkraut JJ. The catecholamine hypothesis of affective disorders: a review of supporting evidence, Neurochem Res Am J Psychiatry Neurobiology of depression Neuron, vol.378283, issue.341, pp.2464-73, 1965.

B. Czeh, D. Benedetto, B. Sillaber, I. Panhuysen, M. Henniger et al., Antidepressants act directly on astrocytes: Evidences and functional consequences Profiling of behavioral changes and hippocampal gene expression in mice chronically treated with the SSRI paroxetine, Eur Neuropsychopharmacol Psychopharmacology (Berl), vol.238485, issue.2004, pp.171-85, 2008.

B. Conti, R. Maier, and A. Barr, Region-specific transcriptional changes following the three antidepressant treatments electro convulsive therapy, sleep deprivation and fluoxetine Electroconvulsive shock and lidocaine-induced seizures in the rat activate astrocytes as measured by glial fibrillary acidic protein, M, et al. Absence of histological lesions in primate models of ECT and magnetic seizure therapy, pp.167-89, 1993.

Q. Liu, B. Li, and H. Zhu, Clomipramine treatment reversed the glial pathology in a chronic unpredictable stress-induced rat model of depression The S100 family of EF-hand calciumbinding proteins: functions and pathology, Eur Neuropsychopharmacol Trends Biochem Sci, vol.1990, issue.214, pp.796-805, 1996.

V. Arolt, M. Peters, and A. Erfurth, S100B and response to treatment in major depression: a pilot study Cerebrospinal fluid S100B levels reflect symptoms of depression in patients with non-inflammatory neurological disorders Fluoxetine increases the content of neurotrophic protein S100beta in the rat hippocampus, Eur Neuropsychopharmacol Neurosci Lett Eur J Pharmacol, vol.1393, issue.420, pp.235-244, 2001.

R. Donato, F. Tramontina, and L. Bobermin, S100: a multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles Secretion of S100B, an astrocyte-derived neurotrophic protein, is stimulated by fluoxetine via a mechanism independent of serotonin, Int J Biochem Cell Biol Prog Neuropsychopharmacol Biol Psychiatry, vol.3395, issue.326, pp.637-68, 2001.

C. Schipke, I. Heuser, O. Peters, P. Whitaker-azmitia, C. Clarke et al., Antidepressants act on glial cells: SSRIs and serotonin elicit astrocyte calcium signaling in the mouse prefrontal cortex Localization of 5- HT1A receptors to astroglial cells in adult rats: implications for neuronal-glial interactions and psychoactive drug mechanism of action A review of central 5-HT receptors and their function, J Psychiatr Res Synapse Neuropharmacology, vol.459697, issue.388, pp.242-250, 1993.

M. Shimizu, A. Nishida, and H. Zensho, Chronic antidepressant exposure enhances 5-hydroxytryptamine7 receptor-mediated cyclic adenosine monophosphate accumulation in rat frontocortical astrocytes 5-HT2B receptors are expressed on astrocytes from brain and in culture and are a chronic target for all five conventional 'serotonin-specific reuptake inhibitors, Glia System and Antidepressant Response Current Drug Targets, pp.1305-1551, 1996.

V. Junker, A. Becker, and R. Huhne, Stimulation of betaadrenoceptors activates astrocytes and provides neuroprotection

E. Hosli and L. Hosli, Receptors for neurotransmitters on astrocytes in the mammalian central nervous system, Progress in Neurobiology, vol.40, issue.4, pp.477-506, 1993.
DOI : 10.1016/0301-0082(93)90019-O

I. Miyazaki, M. Asanuma, and F. Diaz-corrales, Direct evidence for expression of dopamine receptors in astrocytes from basal ganglia, Brain Research, vol.1029, issue.1, pp.120-123, 2004.
DOI : 10.1016/j.brainres.2004.09.014

M. Inazu, H. Takeda, and H. Ikoshi, Pharmacological characterization and visualization of the glial serotonin transporter, Neurochemistry International, vol.39, issue.1, pp.39-49, 2001.
DOI : 10.1016/S0197-0186(01)00010-9

M. Inazu, H. Takeda, and T. Matsumiya, Functional expression of the norepinephrine transporter in cultured rat astrocytes, Journal of Neurochemistry, vol.71, issue.1, pp.136-180, 2003.
DOI : 10.1046/j.1471-4159.2003.01514.x

J. Schildkraut and J. Mooney, Toward a Rapidly Acting Antidepressant: The Normetanephrine and Extraneuronal Monoamine Transporter (Uptake 2) Hypothesis, American Journal of Psychiatry, vol.161, issue.5, pp.909-920, 2004.
DOI : 10.1176/appi.ajp.161.5.909

R. Sapena, D. Morin, and R. Zini, Desipramine treatment differently down-regulates ??-adrenoceptors of freshly isolated neurons and astrocytes, European Journal of Pharmacology, vol.300, issue.1-2, pp.159-62, 1996.
DOI : 10.1016/0014-2999(96)00060-X

P. Mannisto and S. Kaakkola, Catechol-O-methyltransferase (COMT): biochemistry, molecular biology, pharmacology, and clinical efficacy of the new selective COMT inhibitors, Pharmacol Rev, vol.51, issue.4, pp.593-628, 1999.

S. Benmansour, W. Owens, and M. Cecchi, Serotonin clearance in vivo is altered to a greater extent by antidepressant-induced downregulation of the serotonin transporter than by acute blockade of this transporter, J Neurosci, vol.22, issue.15, pp.6766-72, 2002.

X. Cao, L. Li, and Q. Wang, Astrocyte-derived ATP modulates depressive-like behaviors, Nature Medicine, vol.117, issue.6, pp.773-780, 2013.
DOI : 10.1038/nm.3162

A. Hunter, B. Balleine, and T. Minor, Helplessness and escape performance: Glutamate-adenosine interactions in the frontal cortex., Behavioral Neuroscience, vol.117, issue.1, pp.123-158, 2003.
DOI : 10.1037/0735-7044.117.1.123

T. Minor, J. Winslow, and W. Chang, Stress and adenosine: II. Adenosine analogs mimic the effect of inescapable shock on shuttle-escape performance in rats., Behavioral Neuroscience, vol.108, issue.2, pp.265-76, 1994.
DOI : 10.1037/0735-7044.108.2.265

S. Kulkarni and A. Mehta, Purine nucleoside ? mediated immobility in mice: Reversal by antidepressants, Psychopharmacology, vol.23, issue.4, pp.460-463, 1985.
DOI : 10.1007/BF00429665

G. Cunha, P. Canas, and C. Oliveira, Increased density and synapto-protective effect of adenosine A2A receptors upon sub-chronic restraint stress, Neuroscience, vol.141, issue.4, pp.1775-81, 2006.
DOI : 10.1016/j.neuroscience.2006.05.024

M. Kaster, A. Santos, and A. Rodrigues, Involvement of 5-HT1A receptors in the antidepressant-like effect of adenosine in the mouse forced swimming test, Brain Research Bulletin, vol.67, issue.1-2, pp.53-61, 2005.
DOI : 10.1016/j.brainresbull.2005.05.025

M. Kaster, A. Rosa, and M. Rosso, Adenosine administration produces an antidepressant-like effect in mice: evidence for the involvement of A1 and A2A receptors, Neuroscience Letters, vol.355, issue.1-2, pp.21-25, 2004.
DOI : 10.1016/j.neulet.2003.10.040

J. Woodson, T. Minor, and R. Job, Inhibition of adenosine deaminase by erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA) mimics the effect of inescapable shock on escape learning in rats., Behavioral Neuroscience, vol.112, issue.2, pp.399-409, 1998.
DOI : 10.1037/0735-7044.112.2.399

S. Elgun, A. Keskinege, and H. Kumbasar, Dipeptidyl peptidase IV and adenosine deaminase activity, Psychoneuroendocrinology, vol.24, issue.8, pp.823-855, 1999.
DOI : 10.1016/S0306-4530(99)00039-6

H. Herken, A. Gurel, and S. Selek, Adenosine Deaminase, Nitric Oxide, Superoxide Dismutase, and Xanthine Oxidase in Patients with Major Depression: Impact of Antidepressant Treatment, Archives of Medical Research, vol.38, issue.2, pp.247-52, 2007.
DOI : 10.1016/j.arcmed.2006.10.005

D. Van-calker and K. Biber, The Role of Glial Adenosine Receptors in Neural Resilience and the Neurobiology of Mood Disorders, Neurochemical Research, vol.54, issue.5, pp.1205-1222, 2005.
DOI : 10.1007/s11064-005-8792-1

D. Hines, L. Schmitt, and R. Hines, Antidepressant effects of sleep deprivation require astrocyte-dependent adenosine mediated signaling, Translational Psychiatry, vol.34, issue.1, p.212, 2013.
DOI : 10.1001/archpsyc.1996.01830090060009

A. Chau, J. Rose, and B. Koos, Adenosine modulates corticotropin and cortisol release during hypoxia in fetal sheep, American Journal of Obstetrics and Gynecology, vol.180, issue.5, pp.1272-1279, 1999.
DOI : 10.1016/S0002-9378(99)70628-9

S. Scaccianoce, D. Navarra, D. Sciullo, and A. , Adenosine and Pituitary-Adrenocortical Axis Activity in the Rat, Neuroendocrinology, vol.50, issue.4, pp.464-472, 1989.
DOI : 10.1159/000125264

M. Okada, D. Nutt, and T. Murakami, Adenosine receptor subtypes modulate two major functional pathways for hippocampal serotonin release, J Neurosci, vol.21, issue.2, pp.628-668, 2001.

M. Diogenes, C. Fernandes, and A. Sebastiao, Activation of Adenosine A2A Receptor Facilitates Brain-Derived Neurotrophic Factor Modulation of Synaptic Transmission in Hippocampal Slices, Journal of Neuroscience, vol.24, issue.12, pp.2905-2918, 2004.
DOI : 10.1523/JNEUROSCI.4454-03.2004

A. De-mendonca and J. Ribeiro, Adenosine inhibits the NMDA receptor-mediated excitatory postsynaptic potential in the hippocampus, Brain Research, vol.606, issue.2, pp.351-357, 1993.
DOI : 10.1016/0006-8993(93)91007-F

A. De-mendonca and J. Ribeiro, Long-term potentiation observed upon blockade of adenosine A1 receptors in rat hippocampus is N-methyl-d-aspartate receptor-dependent, Neuroscience Letters, vol.291, issue.2, pp.81-85, 2000.
DOI : 10.1016/S0304-3940(00)01391-4

M. Kaster, D. Machado, and A. Santos, Involvement of NMDA receptors in the antidepressant-like action of adenosine, Pharmacological Reports, vol.64, issue.3, pp.706-719, 2012.
DOI : 10.1016/S1734-1140(12)70865-4

V. Krishnan and E. Nestler, Linking Molecules to Mood: New Insight Into the Biology of Depression, American Journal of Psychiatry, vol.167, issue.11, pp.1305-1325, 2010.
DOI : 10.1176/appi.ajp.2009.10030434

G. Sanacora, C. Zarate, and J. Krystal, Targeting the glutamatergic system to develop novel, improved therapeutics for mood disorders, Nature Reviews Drug Discovery, vol.265, issue.5, pp.426-463, 2008.
DOI : 10.1176/appi.ajp.163.1.153

P. Skolnick, R. Layer, and P. Popik, Adaptation of N-Methyl-D-Aspartate (NMDA) Receptors following Antidepressant Treatment: Implications for the Pharmacotherapy of Depression, Pharmacopsychiatry, vol.29, issue.01, pp.23-29, 1996.
DOI : 10.1055/s-2007-979537

N. Li, B. Lee, and R. Liu, mTOR-Dependent Synapse Formation Underlies the Rapid Antidepressant Effects of NMDA Antagonists, Science, vol.329, issue.5994, pp.959-64, 2010.
DOI : 10.1126/science.1190287

N. Li, R. Liu, and J. Dwyer, Glutamate N-methyl-D-aspartate Receptor Antagonists Rapidly Reverse Behavioral and Synaptic Deficits Caused by Chronic Stress Exposure, Biological Psychiatry, vol.69, issue.8, pp.754-61, 2011.
DOI : 10.1016/j.biopsych.2010.12.015

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3068225

R. Berman, A. Cappiello, and A. Anand, Antidepressant effects of ketamine in depressed patients, Biological Psychiatry, vol.47, issue.4, pp.351-355, 2000.
DOI : 10.1016/S0006-3223(99)00230-9

C. Zarate, J. Singh, J. Carlson, and P. , A Randomized Trial of an N-methyl-D-aspartate Antagonist in Treatment-Resistant Major Depression, Archives of General Psychiatry, vol.63, issue.8, pp.856-64, 2006.
DOI : 10.1001/archpsyc.63.8.856

L. Phelps, N. Brutsche, and J. Moral, Family History of Alcohol Dependence and Initial Antidepressant Response to an N-methyl-D-aspartate Antagonist, Biological Psychiatry, vol.65, issue.2, pp.181-185, 2009.
DOI : 10.1016/j.biopsych.2008.09.029

O. Malkesman, D. Austin, and T. Tragon, Acute d-serine treatment produces antidepressant-like effects in rodents, The International Journal of Neuropsychopharmacology, vol.15, issue.08, pp.1-14, 2011.
DOI : 10.1017/S1461145711001386

O. Malkesman, D. Austin, and T. Tragon, Acute d-serine treatment produces antidepressant-like effects in rodents, The International Journal of Neuropsychopharmacology, vol.15, issue.08, pp.1-14, 2012.
DOI : 10.1017/S1461145711001386

L. Monteggia, E. Gideons, and E. Kavalali, The Role of Eukaryotic Elongation Factor 2 Kinase in Rapid Antidepressant Action of Ketamine, Biological Psychiatry, vol.73, issue.12, pp.1199-203, 2013.
DOI : 10.1016/j.biopsych.2012.09.006

E. Nosyreva, K. Szabla, and A. Autry, Acute Suppression of Spontaneous Neurotransmission Drives Synaptic Potentiation, Journal of Neuroscience, vol.33, issue.16, pp.6990-7002, 2013.
DOI : 10.1523/JNEUROSCI.4998-12.2013

T. Papouin, L. Ladepeche, and J. Ruel, Synaptic and Extrasynaptic NMDA Receptors Are Gated by Different Endogenous Coagonists, Cell, vol.150, issue.3, pp.633-679, 2012.
DOI : 10.1016/j.cell.2012.06.029

K. Lehre, L. Levy, and O. Ottersen, Differential expression of two glial glutamate transporters in the rat brain: quantitative and immunocytochemical observations, J Neurosci, vol.15, issue.3, pp.1835-53, 1995.

Y. Huang, S. Sinha, and K. Tanaka, Astrocyte Glutamate Transporters Regulate Metabotropic Glutamate Receptor-Mediated Excitation of Hippocampal Interneurons, Journal of Neuroscience, vol.24, issue.19, pp.4551-4560, 2004.
DOI : 10.1523/JNEUROSCI.5217-03.2004

M. Banasr, G. Chowdhury, and R. Terwilliger, Glial pathology in an animal model of depression: reversal of stress-induced cellular, metabolic and behavioral deficits by the glutamate-modulating drug riluzole, Molecular Psychiatry, vol.23, issue.5, pp.501-512, 2010.
DOI : 10.1093/cercor/bhi104

H. Song, C. Stevens, and F. Gage, Astroglia induce neurogenesis from adult neural stem cells, Nature, vol.5, issue.6884, pp.39-44, 2002.
DOI : 10.1038/417039a

D. Lim and A. Alvarez-buylla, Interaction between astrocytes and adult subventricular zone precursors stimulates neurogenesis, Proceedings of the National Academy of Sciences, vol.96, issue.13, pp.7526-7557, 1999.
DOI : 10.1073/pnas.96.13.7526

B. Connor and M. Dragunow, The role of neuronal growth factors in neurodegenerative disorders of the human brain, Brain Research Reviews, vol.27, issue.1, pp.1-39, 1998.
DOI : 10.1016/S0165-0173(98)00004-6

F. Karege, G. Vaudan, and M. Schwald, Neurotrophin levels in postmortem brains of suicide victims and the effects of antemortem diagnosis and psychotropic drugs, Molecular Brain Research, vol.136, issue.1-2, pp.29-37, 2005.
DOI : 10.1016/j.molbrainres.2004.12.020

Y. Shirayama, A. Chen, and S. Nakagawa, Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression, J Neurosci, vol.22, issue.8, pp.3251-61, 2002.

R. Duman and L. Monteggia, A Neurotrophic Model for Stress-Related Mood Disorders, Biological Psychiatry, vol.59, issue.12, pp.1116-1143, 2006.
DOI : 10.1016/j.biopsych.2006.02.013

B. Samuels and R. Hen, Neurogenesis and affective disorders, European Journal of Neuroscience, vol.132, issue.6, pp.1152-1161, 2011.
DOI : 10.1111/j.1460-9568.2011.07614.x

M. Nibuya, S. Morinobu, and R. Duman, Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments, J Neurosci, vol.15, issue.11, pp.7539-7586, 1995.

J. Lee, W. Duan, and M. Mattson, Evidence that brain-derived neurotrophic factor is required for basal neurogenesis and mediates, in part, the enhancement of neurogenesis by dietary restriction in the hippocampus of adult mice, Journal of Neurochemistry, vol.57, issue.6, pp.1367-75, 2002.
DOI : 10.1046/j.1471-4159.2002.01085.x

L. Santarelli, S. M. Gross, and C. , Requirement of Hippocampal Neurogenesis for the Behavioral Effects of Antidepressants, Science, vol.301, issue.5634, pp.805-814, 2003.
DOI : 10.1126/science.1083328

D. David, B. Samuels, and Q. Rainer, Neurogenesis-Dependent and -Independent Effects of Fluoxetine in an Animal Model of Anxiety/Depression, Neuron, vol.62, issue.4, pp.479-93, 2009.
DOI : 10.1016/j.neuron.2009.04.017

J. Prickaerts, D. Vry, J. Boere, and J. , Differential BDNF Responses of Triple Versus Dual Reuptake Inhibition in Neuronal and Astrocytoma Cells as well as in Rat Hippocampus and Prefrontal Cortex, Journal of Molecular Neuroscience, vol.16, issue.6, pp.167-75, 2012.
DOI : 10.1007/s12031-012-9802-9

I. Allaman, H. Fiumelli, and P. Magistretti, Fluoxetine regulates the expression of neurotrophic/growth factors and glucose metabolism in astrocytes, Psychopharmacology, vol.4, issue.Suppl 1, pp.75-84, 2011.
DOI : 10.1007/s00213-011-2190-y

S. Kittel-schneider, G. Kenis, and J. Schek, Expression of Monoamine Transporters, Nitric Oxide Synthase 3, and Neurotrophin Genes in Antidepressant-Stimulated Astrocytes, Frontiers in Psychiatry, vol.3, p.33, 2012.
DOI : 10.3389/fpsyt.2012.00033

F. Angelucci, N. Croce, and G. Spalletta, Paroxetine Rapidly Modulates the Expression of Brain-Derived Neurotrophic Factor mRNA and Protein in a Human Glioblastoma-Astrocytoma Cell Line, Pharmacology, vol.87, issue.1-2, pp.5-10
DOI : 10.1159/000322528

K. Hisaoka, A. Nishida, and T. Koda, Antidepressant drug treatments induce glial cell line-derived neurotrophic factor (GDNF) synthesis and release in rat C6 glioblastoma cells, Journal of Neurochemistry, vol.373, issue.1, pp.25-34, 2001.
DOI : 10.1046/j.1471-4159.2001.00531.x

N. Kajitani, K. Hisaoka-nakashima, and N. Morioka, Antidepressant Acts on Astrocytes Leading to an Increase in the Expression of Neurotrophic/Growth Factors: Differential Regulation of FGF-2 by Noradrenaline, PLoS ONE, vol.19, issue.12, p.51197, 2012.
DOI : 10.1371/journal.pone.0051197.t002

K. Hisaoka, A. Nishida, and M. Takebayashi, Serotonin increases glial cell line-derived neurotrophic factor release in rat C6 glioblastoma cells, Brain Research, vol.1002, issue.1-2, pp.167-70, 2004.
DOI : 10.1016/j.brainres.2004.01.009

K. Ohta, S. Kuno, and I. Mizuta, Effects of dopamine agonists bromocriptine, pergolide, cabergoline, and SKF-38393 on GDNF, NGF, and BDNF synthesis in cultured mouse astrocytes, Life Sciences, vol.73, issue.5, pp.617-643, 2003.
DOI : 10.1016/S0024-3205(03)00321-7

S. Inoue, M. Susukida, and K. Ikeda, Dopaminergic Transmitter Up-Regulation of Brain-Derived Neurotrophic Factor (BDNF) and Nerve Growth Factor (NGF) Synthesis in Mouse Astrocytes in Culture, Biochemical and Biophysical Research Communications, vol.238, issue.2, pp.468-72, 1997.
DOI : 10.1006/bbrc.1997.7324

G. Quesseveur, D. David, and M. Gaillard, BDNF overexpression in mouse hippocampal astrocytes promotes local neurogenesis and elicits anxiolytic-like activities, Translational Psychiatry, vol.20, issue.4, p.253, 2013.
DOI : 10.1016/j.tins.2009.05.001

X. Cao, L. Li, and X. Qin, Astrocytic ATP release regulates the proliferation of neural stem cells in the adult hippocampus, Stem Cells, 2013.

D. Lie, S. Colamarino, and H. Song, Wnt signalling regulates adult hippocampal neurogenesis, Nature, vol.437, issue.7063, pp.1370-1375, 2005.
DOI : 10.1038/nature04108

J. Lin, T. Takano, and G. Arcuino, Purinergic signaling regulates neural progenitor cell expansion and neurogenesis, Developmental Biology, vol.302, issue.1, pp.356-66, 2007.
DOI : 10.1016/j.ydbio.2006.09.017

S. Suyama, T. Sunabori, and H. Kanki, Purinergic Signaling Promotes Proliferation of Adult Mouse Subventricular Zone Cells, Journal of Neuroscience, vol.32, issue.27, pp.9238-9285, 2012.
DOI : 10.1523/JNEUROSCI.4001-11.2012

A. Benabid, P. Pollak, and A. Louveau, Combined (Thalamotomy and Stimulation) Stereotactic Surgery of the VIM Thalamic Nucleus for Bilateral Parkinson Disease, Stereotactic and Functional Neurosurgery, vol.50, issue.1-6, pp.1-6, 1987.
DOI : 10.1159/000100803

H. Mayberg, A. Lozano, and V. Voon, Deep Brain Stimulation for Treatment-Resistant Depression, Neuron, vol.45, issue.5, pp.651-60, 2005.
DOI : 10.1016/j.neuron.2005.02.014

S. Kennedy, P. Giacobbe, and S. Rizvi, Deep Brain Stimulation for Treatment-Resistant Depression: Follow-Up After 3 to 6 Years, American Journal of Psychiatry, vol.168, issue.5
DOI : 10.1176/appi.ajp.2010.10081187

A. Lozano, J. Dostrovsky, and R. Chen, Deep brain stimulation for Parkinson's disease: disrupting the disruption, The Lancet Neurology, vol.1, issue.4, pp.225-256, 2002.
DOI : 10.1016/S1474-4422(02)00101-1

E. Montgomery, J. Gale, and J. , Mechanisms of action of deep brain stimulation (DBS), Neuroscience & Biobehavioral Reviews, vol.32, issue.3, pp.388-407, 2008.
DOI : 10.1016/j.neubiorev.2007.06.003

J. Vitek, Mechanisms of deep brain stimulation: Excitation or inhibition, Movement Disorders, vol.98, issue.S3, pp.69-72, 2002.
DOI : 10.1002/mds.10144

P. Gubellini, P. Salin, K. Goff, and L. , Deep brain stimulation in neurological diseases and experimental models: From molecule to complex behavior, Progress in Neurobiology, vol.89, issue.1, pp.79-123, 2009.
DOI : 10.1016/j.pneurobio.2009.06.003

URL : https://hal.archives-ouvertes.fr/hal-00583024

C. Mcintyre, M. Savasta, K. Goff, and L. , Uncovering the mechanism(s) of action of deep brain stimulation: activation, inhibition, or both, Clinical Neurophysiology, vol.115, issue.6, pp.1239-1287, 2004.
DOI : 10.1016/j.clinph.2003.12.024

URL : https://hal.archives-ouvertes.fr/hal-00306742

V. Vedam-mai, E. Van-battum, and W. Kamphuis, Deep brain stimulation and the role of astrocytes, Molecular Psychiatry, vol.327, issue.2, pp.124-155, 2012.
DOI : 10.1038/mp.2011.61

T. Takano, G. Tian, and W. Peng, Astrocyte-mediated control of cerebral blood flow, Nature Neuroscience, vol.10, issue.2, pp.260-267, 2006.
DOI : 10.1038/nn1623

M. Zonta, M. Angulo, and S. Gobbo, Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation, Nature Neuroscience, vol.258, issue.1, pp.43-50, 2003.
DOI : 10.1038/nn980

Z. Kefalopoulou, A. Paschali, and E. Markaki, Regional cerebral blood flow changes induced by deep brain stimulation in secondary dystonia, Acta Neurochirurgica, vol.119, issue.Suppl 3, pp.1007-1021, 2010.
DOI : 10.1007/s00701-010-0612-y

J. Perlmutter, J. Mink, and A. Bastian, Blood flow responses to deep brain stimulation of thalamus, Neurology, vol.58, issue.9, pp.1388-94, 2002.
DOI : 10.1212/WNL.58.9.1388

L. Bekar, W. Libionka, and G. Tian, Adenosine is crucial for deep brain stimulation???mediated attenuation of tremor, Nature Medicine, vol.73, issue.1, pp.75-80, 2008.
DOI : 10.1016/j.clinph.2004.05.031

V. Tawfik, S. Chang, and F. Hitti, Deep Brain Stimulation Results in Local Glutamate and Adenosine Release: Investigation Into the Role of Astrocytes, Neurosurgery, vol.67, issue.2, pp.367-75, 2010.
DOI : 10.1227/01.NEU.0000371988.73620.4C

L. Jansson, M. Wennstrom, and A. Johanson, Glial cell activation in response to electroconvulsive seizures, Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol.33, issue.7, pp.1119-1147, 2009.
DOI : 10.1016/j.pnpbp.2009.06.007

O. Steward, Electroconvulsive seizures upregulate astroglial gene expression selectively in the dentate gyrus, Molecular Brain Research, vol.25, issue.3-4, pp.3-4, 1994.
DOI : 10.1016/0169-328X(94)90156-2

D. Ongur, J. Pohlman, and A. Dow, Electroconvulsive Seizures Stimulate Glial Proliferation and Reduce Expression of Sprouty2 within the Prefrontal Cortex of Rats, Biological Psychiatry, vol.62, issue.5, pp.505-517, 2007.
DOI : 10.1016/j.biopsych.2006.11.014

M. Wennstrom, J. Hellsten, and C. Ekdahl, Electroconvulsive seizures induce proliferation of NG2-expressing glial cells in adult rat hippocampus, Biological Psychiatry, vol.54, issue.10, pp.1015-1039, 2003.
DOI : 10.1016/S0006-3223(03)00693-0

M. Wennstrom, J. Hellsten, and A. Tingstrom, Electroconvulsive seizures induce proliferation of NG2-expressing glial cells in adult rat amygdala, Biological Psychiatry, vol.55, issue.5, pp.464-71, 2004.
DOI : 10.1016/j.biopsych.2003.11.011

C. Nemeroff, H. Mayberg, and S. Krahl, VNS Therapy in Treatment-Resistant Depression: Clinical Evidence and Putative Neurobiological Mechanisms, Neuropsychopharmacology, vol.139, issue.7, pp.1345-55, 2006.
DOI : 10.1038/sj.npp.1301082

D. Mcdougal, G. Hermann, and R. Rogers, Vagal Afferent Stimulation Activates Astrocytes in the Nucleus of the Solitary Tract Via AMPA Receptors: Evidence of an Atypical Neural-Glial Interaction in the Brainstem, Journal of Neuroscience, vol.31, issue.39, pp.14037-14082, 2011.
DOI : 10.1523/JNEUROSCI.2855-11.2011

M. Fujiki and O. Steward, High frequency transcranial magnetic stimulation mimics the effects of ECS in upregulating astroglial gene

A. Kozlov, M. Angulo, and E. Audinat, Target cell-specific modulation of neuronal activity by astrocytes, Proceedings of the National Academy of Sciences, vol.103, issue.26, pp.10058-63, 2006.
DOI : 10.1073/pnas.0603741103

S. Chang, Y. Shon, and F. Agnesi, Microthalamotomy effect during deep brain stimulation: potential involvement of adenosine and glutamate efflux, Conf Proc IEEE Eng Med Biol Soc, vol.2009, pp.3294-3301, 2009.

T. Morishita, K. Foote, and S. Wu, Brain penetration effects of microelectrodes and deep brain stimulation leads in ventral intermediate nucleus stimulation for essential tremor, Journal of Neurosurgery, vol.112, issue.3, pp.491-497, 2010.
DOI : 10.3171/2009.7.JNS09150

J. Mann, K. Foote, and C. Garvan, Brain penetration effects of microelectrodes and DBS leads in STN or GPi, Journal of Neurology, Neurosurgery & Psychiatry, vol.80, issue.7, pp.794-801, 2009.
DOI : 10.1136/jnnp.2008.159558

L. Perez-caballero, R. Perez-egea, and C. Romero-grimaldi, Early responses to deep brain stimulation in depression are modulated by anti-inflammatory drugs, Molecular Psychiatry, vol.22, issue.5, 2013.
DOI : 10.1038/mp.2011.61

A. Etiévant, C. Oosterhof, and C. Bétry, P.1.018 Glial modulation of medial prefrontal cortex deep brain stimulation, European Neuropsychopharmacology, vol.21, pp.16-17, 2011.
DOI : 10.1016/S0924-977X(11)70019-0

C. Hamani, D. Machado, and D. Hipolide, Deep Brain Stimulation Reverses Anhedonic-Like Behavior in a Chronic Model of Depression: Role of Serotonin and Brain Derived Neurotrophic Factor, Biological Psychiatry, vol.71, issue.1, pp.30-35, 2012.
DOI : 10.1016/j.biopsych.2011.08.025