P. Anderson, Post-transcriptional regulons coordinate the initiation and resolution of inflammation, Nature Reviews Immunology, vol.278, issue.1, pp.24-35, 2010.
DOI : 10.1038/nri2685

L. Arnold, A. Henry, F. Poron, Y. Baba-amer, N. Van-rooijen et al., Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis, J. Exp. Med, vol.204, pp.1071-1081, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00136917

C. Auffray, D. Fogg, M. Garfa, G. Elain, O. Join-lambert et al., Monitoring of Blood Vessels and Tissues by a Population of Monocytes with Patrolling Behavior, Science, vol.317, issue.5838, pp.666-670, 2007.
DOI : 10.1126/science.1142883

URL : https://hal.archives-ouvertes.fr/pasteur-00337698

C. C. Bain, C. L. Scott, H. Uronen-hansson, S. Gudjonsson, O. Jansson et al., Resident and pro-inflammatory macrophages in the colon represent alternative context-dependent fates of the same Ly6Chi monocyte precursors, Mucosal Immunology, vol.167, issue.3, pp.498-510, 2012.
DOI : 10.1084/jem.20051100

S. K. Biswas and A. Mantovani, Orchestration of Metabolism by Macrophages, Cell Metabolism, vol.15, issue.4, pp.432-437, 2012.
DOI : 10.1016/j.cmet.2011.11.013

M. A. Bouhlel, B. Derudas, E. Rigamonti, R. Dievart, J. Brozek et al., PPAR?? Activation Primes Human Monocytes into Alternative M2 Macrophages with Anti-inflammatory Properties, PPARgamma Activation Primes Human Monocytes into Alternative M2 Macrophages with Anti-inflammatory Properties, pp.137-143, 2007.
DOI : 10.1016/j.cmet.2007.06.010

S. C. Bryer, G. Fantuzzi, N. Van-rooijen, and T. J. Koh, Urokinase-Type Plasminogen Activator Plays Essential Roles in Macrophage Chemotaxis and Skeletal Muscle Regeneration, The Journal of Immunology, vol.180, issue.2, pp.1179-1188, 2008.
DOI : 10.4049/jimmunol.180.2.1179

O. Butovsky, G. Landa, G. Kunis, Y. Ziv, H. Avidan et al., Induction and blockage of oligodendrogenesis by differently activated microglia in an animal model of multiple sclerosis, Journal of Clinical Investigation, vol.116, issue.4, pp.905-915, 2006.
DOI : 10.1172/JCI26836

O. Butovsky, Y. Ziv, A. Schwartz, G. Landa, A. E. Talpalar et al., Microglia activated by IL-4 or IFN-?? differentially induce neurogenesis and oligodendrogenesis from adult stem/progenitor cells, Molecular and Cellular Neuroscience, vol.31, issue.1, pp.149-160, 2006.
DOI : 10.1016/j.mcn.2005.10.006

G. Cairo, S. Recalcati, A. Mantovani, and M. Locati, Iron trafficking and metabolism in macrophages: contribution to the polarized phenotype, Trends in Immunology, vol.32, issue.6, pp.241-247, 2011.
DOI : 10.1016/j.it.2011.03.007

J. A. Chasis and N. Mohandas, Erythroblastic islands: niches for erythropoiesis, Blood, vol.112, issue.3, pp.470-478, 2008.
DOI : 10.1182/blood-2008-03-077883

G. Y. Chen and G. Nunez, Sterile inflammation: sensing and reacting to damage, Nature Reviews Immunology, vol.464, issue.12, pp.826-837, 2010.
DOI : 10.1038/nri2873

M. Cheng, M. H. Nguyen, G. Fantuzzi, and T. J. Koh, Endogenous interferon-?? is required for efficient skeletal muscle regeneration, AJP: Cell Physiology, vol.294, issue.5, pp.1183-1191, 2008.
DOI : 10.1152/ajpcell.00568.2007

A. Chow, B. D. Brown, and M. Merad, Studying the mononuclear phagocyte system in the molecular age, Nature Reviews Immunology, vol.83, issue.11, pp.788-798, 2011.
DOI : 10.1038/nri3087

A. Chow, M. Huggins, J. Ahmed, D. Hashimoto, D. Lucas et al., CD169+ macrophages provide a niche promoting erythropoiesis under homeostasis and stress, Nature Medicine, vol.67, issue.4, pp.429-436, 2013.
DOI : 10.1038/nm.3057

M. Cusimano, D. Biziato, E. Brambilla, M. Donega, C. Alfaro-cervello et al., Transplanted neural stem/precursor cells instruct phagocytes and reduce secondary tissue damage in the injured spinal cord, Brain, vol.135, issue.2, pp.447-460, 2012.
DOI : 10.1093/brain/awr339

J. S. Duffield, S. J. Forbes, C. M. Constandinou, S. Clay, M. Partolina et al., Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair, Journal of Clinical Investigation, vol.115, issue.1, pp.56-65, 2005.
DOI : 10.1172/JCI200522675

F. Geissmann, S. Jung, and D. R. Littman, Blood Monocytes Consist of Two Principal Subsets with Distinct Migratory Properties, Immunity, vol.19, issue.1, pp.71-82, 2003.
DOI : 10.1016/S1074-7613(03)00174-2

N. Ghasemlou, D. Bouhy, J. Yang, R. Lopez-vales, M. Haber et al., Beneficial effects of secretory leukocyte protease inhibitor after spinal cord injury, Brain, vol.133, issue.1, pp.126-138, 2010.
DOI : 10.1093/brain/awp304

S. Gordon and F. O. Martinez, Alternative Activation of Macrophages: Mechanism and Functions, Immunity, vol.32, issue.5, pp.593-604, 2010.
DOI : 10.1016/j.immuni.2010.05.007

M. Hanspal, Y. Smockova, and Q. Uong, Molecular identification and functional characterization of a novel protein that mediates the attachment of erythroblasts to macrophages, Blood, vol.92, pp.2940-2950, 1998.

M. Hara, S. Yuasa, K. Shimoji, T. Onizuka, N. Hayashiji et al., G-CSF influences mouse skeletal muscle development and regeneration by stimulating myoblast proliferation, The Journal of Experimental Medicine, vol.122, issue.4, pp.715-727, 2011.
DOI : 10.1016/j.stem.2009.02.013

D. Hashimoto, A. Chow, C. Noizat, P. Teo, M. B. Beasley et al., Tissue-Resident Macrophages Self-Maintain Locally throughout Adult Life with Minimal Contribution from Circulating Monocytes, Immunity, vol.38, issue.4, pp.792-804, 2013.
DOI : 10.1016/j.immuni.2013.04.004

N. Hikawa, H. Horie, and T. Takenaka, Macrophage-enhanced neurite regeneration of adult dorsal root ganglia neurones in culture, NeuroReport, vol.5, issue.1, pp.41-44, 1993.
DOI : 10.1097/00001756-199310000-00010

N. Hikawa and T. Takenaka, Myelin-stimulated macrophages release neurotrophic factors for adult dorsal root ganglion neurons in culture, Cellular and Molecular Neurobiology, vol.19, issue.4, pp.517-528, 1996.
DOI : 10.1007/BF02150231

G. Hoeffel, Y. Wang, M. Greter, P. See, P. Teo et al., Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac???derived macrophages, The Journal of Experimental Medicine, vol.104, issue.6, 2012.
DOI : 10.1038/345442a0

M. Jung, A. Sola, J. Hughes, D. C. Kluth, E. Vinuesa et al., Infusion of IL-10???expressing cells protects against renal ischemia through induction of lipocalin-2, Kidney International, vol.81, issue.10, pp.969-982, 2012.
DOI : 10.1038/ki.2011.446

K. A. Kigerl, J. C. Gensel, D. P. Ankeny, J. K. Alexander, D. J. Donnelly et al., Identification of Two Distinct Macrophage Subsets with Divergent Effects Causing either Neurotoxicity or Regeneration in the Injured Mouse Spinal Cord, Journal of Neuroscience, vol.29, issue.43, pp.13435-13444, 2009.
DOI : 10.1523/JNEUROSCI.3257-09.2009

M. G. Kim, C. S. Boo, Y. S. Ko, H. Y. Lee, W. Y. Cho et al., Depletion of kidney CD11c+ F4/80+ cells impairs the recovery process in ischaemia/reperfusion-induced acute kidney injury, Nephrology Dialysis Transplantation, vol.25, issue.9, pp.2908-2921, 2010.
DOI : 10.1093/ndt/gfq183

T. Krausgruber, K. Blazek, T. Smallie, S. Alzabin, H. Lockstone et al., IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses, Nature Immunology, vol.161, issue.3, pp.231-238, 2011.
DOI : 10.1084/jem.20030026

T. Lawrence and G. Natoli, Transcriptional regulation of macrophage polarization: enabling diversity with identity, Nature Reviews Immunology, vol.204, issue.11, pp.750-761, 2011.
DOI : 10.1038/nri3088

G. Lee, A. Lo, S. A. Short, T. J. Mankelow, F. Spring et al., Targeted gene deletion demonstrates that the cell adhesion molecule ICAM-4 is critical for erythroblastic island formation, Blood, vol.108, issue.6, pp.2064-2071, 2006.
DOI : 10.1182/blood-2006-03-006759

S. Lee, S. Huen, H. Nishio, S. Nishio, H. K. Lee et al., Distinct Macrophage Phenotypes Contribute to Kidney Injury and Repair, Journal of the American Society of Nephrology, vol.22, issue.2, pp.317-326, 2011.
DOI : 10.1681/ASN.2009060615

S. L. Lin, A. P. Castano, B. T. Nowlin, M. L. Lupher, . Jr et al., Bone Marrow Ly6Chigh Monocytes Are Selectively Recruited to Injured Kidney and Differentiate into Functionally Distinct Populations, The Journal of Immunology, vol.183, issue.10, pp.6733-6743, 2009.
DOI : 10.4049/jimmunol.0901473

S. L. Lin, B. Li, S. Rao, E. J. Yeo, T. E. Hudson et al., Macrophage Wnt7b is critical for kidney repair and regeneration, Proc. Natl. Acad. Sci U. S. A, pp.4194-4199, 2010.
DOI : 10.1073/pnas.0912228107

S. Lorenzini, T. G. Bird, L. Boulter, C. Bellamy, K. Samuel et al., Characterisation of a stereotypical cellular and extracellular adult liver progenitor cell niche in rodents and diseased human liver, Gut, vol.59, issue.5, pp.645-654, 2010.
DOI : 10.1136/gut.2009.182345

H. Lu, D. Huang, N. Saederup, I. F. Charo, R. M. Ransohoff et al., Macrophages recruited via CCR2 produce insulin-like growth factor-1 to repair acute skeletal muscle injury, The FASEB Journal, vol.25, issue.1, pp.358-369, 2011.
DOI : 10.1096/fj.10-171579

T. Lucas, A. Waisman, R. Ranjan, J. Roes, T. Krieg et al., Differential Roles of Macrophages in Diverse Phases of Skin Repair, The Journal of Immunology, vol.184, issue.7, pp.3964-3977, 2010.
DOI : 10.4049/jimmunol.0903356

A. Mantovani, S. K. Biswas, M. R. Galdiero, A. Sica, and M. Locati, Macrophage plasticity and polarization in tissue repair and remodelling, The Journal of Pathology, vol.224, issue.2, pp.176-185, 2013.
DOI : 10.1002/path.4133

D. Manwani and J. J. Bieker, Chapter 2 The Erythroblastic Island, Curr. Top. Dev. Biol, vol.82, pp.23-53, 2008.
DOI : 10.1016/S0070-2153(07)00002-6

I. Marigo, E. Bosio, S. Solito, C. Mesa, A. Fernandez et al., Tumor-Induced Tolerance and Immune Suppression Depend on the C/EBP?? Transcription Factor, Immunity, vol.32, issue.6, pp.790-802, 2010.
DOI : 10.1016/j.immuni.2010.05.010

F. O. Martinez, A. Sica, A. Mantovani, and M. Locati, Macrophage activation and polarization, Frontiers in Bioscience, vol.13, issue.13, pp.453-61, 2008.
DOI : 10.2741/2692

T. Matsushima, M. Nakashima, K. Oshima, Y. Abe, J. Nishimura et al., Receptor binding cancer antigen expressed on SiSo cells, a novel regulator of apoptosis of erythroid progenitor cells, Blood, vol.98, issue.2, pp.313-321, 2001.
DOI : 10.1182/blood.V98.2.313

I. S. Mclennan, Resident macrophages (ED2- and ED3-positive) do not phagocytose degenerating rat skeletal muscle fibres, Cell & Tissue Research, vol.37, issue.1, pp.193-196, 1993.
DOI : 10.1007/BF00323586

I. S. Mclennan, Degenerating and regenerating skeletal muscles contain several subpopulations of macrophages with distinct spatial and temporal distributions, J. Anat, vol.188, pp.17-28, 1996.

C. Meijer, M. J. Wiezer, A. M. Diehl, H. J. Schouten, S. Meijer et al., Kupffer cell depletion by CI2MDP-liposomes alters hepatic cytokine expression and delays liver regeneration after partial hepatectomy, Liver International, vol.20, issue.1, pp.66-77, 2000.
DOI : 10.1034/j.1600-0676.2000.020001066.x

J. Menke, Y. Iwata, W. A. Rabacal, R. Basu, Y. G. Yeung et al., CSF-1 signals directly to renal tubular epithelial cells to mediate repair in mice, Journal of Clinical Investigation, vol.119, issue.8, pp.2330-2342, 2009.
DOI : 10.1172/JCI39087DS1

D. M. Mosser and J. P. Edwards, Exploring the full spectrum of macrophage activation, Nature Reviews Immunology, vol.117, issue.12, pp.958-969, 2008.
DOI : 10.1038/nri2448

M. Mukaino, M. Nakamura, O. Yamada, S. Okada, S. Morikawa et al., Anti-IL-6-receptor antibody promotes repair of spinal cord injury by inducing microglia-dominant inflammation, Experimental Neurology, vol.224, issue.2, pp.403-414, 2010.
DOI : 10.1016/j.expneurol.2010.04.020

P. J. Murray and T. A. Wynn, Protective and pathogenic functions of macrophage subsets, Nature Reviews Immunology, vol.332, issue.11, pp.723-737, 2011.
DOI : 10.1038/nri3073

M. Nahrendorf, F. K. Swirski, E. Aikawa, L. Stangenberg, T. Wurdinger et al., The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions, The Journal of Experimental Medicine, vol.52, issue.12, pp.3037-3047, 2007.
DOI : 10.1007/BF00788278

P. J. Nelson, A. J. Rees, M. D. Griffin, J. Hughes, C. Kurts et al., The Renal Mononuclear Phagocytic System, Journal of the American Society of Nephrology, vol.23, issue.2, pp.194-203, 2012.
DOI : 10.1681/ASN.2011070680

O. Neill, L. A. Hardie, and D. G. , Metabolism of inflammation limited by AMPK and pseudo-starvation, Nature, vol.50, issue.7432, pp.346-355, 2013.
DOI : 10.1038/nature11862

J. I. Odegaard, R. R. Ricardo-gonzalez, M. H. Goforth, C. R. Morel, V. Subramanian et al., Macrophage-specific PPAR?? controls alternative activation and improves insulin resistance, Nature, vol.292, issue.7148, pp.1116-1120, 2007.
DOI : 10.1038/nature05894

Y. Ohmori and T. A. Hamilton, IL-4-induced STAT6 suppresses IFN-gamma-stimulated STAT1- dependent transcription in mouse macrophages, J Immunol, vol.159, pp.5474-5482, 1997.

E. Perdiguero, P. Sousa-victor, V. Ruiz-bonilla, M. Jardi, C. Caelles et al., MKP-1-regulated AKT coordinates macrophage transitions and resolution of inflammation during tissue repair, J. Cell Biol, vol.38, issue.195, pp.307-322, 2011.

J. W. Pollard, Trophic macrophages in development and disease, Nature Reviews Immunology, vol.87, issue.4, pp.259-270, 2009.
DOI : 10.1038/nri2528

O. Rapalino, O. Lazarov-spiegler, E. Agranov, G. J. Velan, E. Yoles et al., Implantation of stimulated homologous macrophages results in partial recovery of paraplegic rats, Nature Medicine, vol.336, issue.7, pp.814-821, 1998.
DOI : 10.1016/0361-9230(90)90264-Z

A. Rivollier, J. He, A. Kole, V. Valatas, and B. L. Kelsall, Inflammation switches the differentiation program of Ly6Chi monocytes from antiinflammatory macrophages to inflammatory dendritic cells in the colon, J Exp Med, vol.1, pp.139-155, 2012.

D. Ruffell, F. Mourkioti, A. Gambardella, P. Kirstetter, R. G. Lopez et al., A CREB-C/EBPbeta cascade induces M2 macrophage-specific gene expression and promotes muscle injury repair, Proc. Natl. Acad. Sci. USA, pp.17475-17480, 2009.

M. Saclier, S. Cuvellier, M. Magnan, R. Mounier, and B. Chazaud, Monocyte/macrophage interactions with myogenic precursor cells during skeletal muscle regeneration, FEBS Journal, vol.18, issue.17, 2013.
DOI : 10.1111/febs.12166

M. Saclier, H. Yacoub-youssef, A. L. Mackey, L. Arnold, H. Ardjoune et al., Differentially Activated Macrophages Orchestrate Myogenic Precursor Cell Fate During Human Skeletal Muscle Regeneration, STEM CELLS, vol.195, issue.2, pp.384-396, 2013.
DOI : 10.1002/stem.1288

URL : https://hal.archives-ouvertes.fr/inserm-00787108

T. Satoh, O. Takeuchi, A. Vandenbon, K. Yasuda, Y. Tanaka et al., The Jmjd3-Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection, Nature Immunology, vol.181, issue.10, pp.936-944, 2010.
DOI : 10.1074/jbc.M304266200

D. L. Schonberg, E. Z. Goldstein, F. R. Sahinkaya, P. Wei, P. G. Popovich et al., Ferritin Stimulates Oligodendrocyte Genesis in the Adult Spinal Cord and Can Be Transferred from Macrophages to NG2 Cells In Vivo, Journal of Neuroscience, vol.32, issue.16, pp.5374-5384, 2012.
DOI : 10.1523/JNEUROSCI.3517-11.2012

C. Schulz, P. E. Gomez, L. Chorro, H. Szabo-rogers, N. Cagnard et al., A Lineage of Myeloid Cells Independent of Myb and Hematopoietic Stem Cells, Science, vol.336, issue.6077, pp.86-90, 2012.
DOI : 10.1126/science.1219179

R. Shechter, A. London, C. Varol, C. Raposo, M. Cusimano et al., Infiltrating Blood-Derived Macrophages Are Vital Cells Playing an Anti-inflammatory Role in Recovery from Spinal Cord Injury in Mice, PLoS Medicine, vol.116, issue.7, 2009.
DOI : 10.1371/journal.pmed.1000113.s012

R. Shechter, O. Miller, G. Yovel, N. Rosenzweig, A. London et al., Recruitment of Beneficial M2 Macrophages to Injured Spinal Cord Is Orchestrated by Remote Brain Choroid Plexus, Immunity, vol.38, issue.3, pp.555-539, 2013.
DOI : 10.1016/j.immuni.2013.02.012

R. Shechter, C. Raposo, A. London, I. Sagi, and M. Schwartz, The Glial Scar-Monocyte Interplay: A Pivotal Resolution Phase in Spinal Cord Repair, PLoS ONE, vol.204, issue.12, 2011.
DOI : 10.1371/journal.pone.0027969.s004

R. Shechter and M. Schwartz, CNS sterile injury: just another wound healing?, Trends in Molecular Medicine, vol.19, issue.3, pp.135-143, 2013.
DOI : 10.1016/j.molmed.2012.11.007

C. Shi and E. G. Pamer, Monocyte recruitment during infection and inflammation, Nature Reviews Immunology, vol.182, issue.11, pp.762-774, 2011.
DOI : 10.1038/nri3070

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3947780

A. Sica and A. Mantovani, Macrophage plasticity and polarization: in vivo veritas, Journal of Clinical Investigation, vol.122, issue.3, pp.787-795, 2012.
DOI : 10.1172/JCI59643DS1

C. Sonnet, P. Lafuste, L. Arnold, M. Brigitte, F. Poron et al., Human macrophages rescue myoblasts and myotubes from apoptosis through a set of adhesion molecular systems, Journal of Cell Science, vol.119, issue.12, pp.2497-2507, 2006.
DOI : 10.1242/jcs.02988

J. A. Stefater, . Iii, S. Ren, R. A. Lang, and J. S. Duffield, Metchnikoff's policemen: macrophages in development, homeostasis and regeneration, Trends in Molecular Medicine, vol.17, issue.12, pp.743-752, 2011.
DOI : 10.1016/j.molmed.2011.07.009

M. Stein, S. Keshav, N. Harris, and S. Gordon, Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation, Journal of Experimental Medicine, vol.176, issue.1, 1992.
DOI : 10.1084/jem.176.1.287

R. D. Stout, C. Jiang, B. Matta, I. Tietzel, S. K. Watkins et al., Macrophages Sequentially Change Their Functional Phenotype in Response to Changes in Microenvironmental Influences, The Journal of Immunology, vol.175, issue.1, pp.342-349, 2005.
DOI : 10.4049/jimmunol.175.1.342

M. Summan, G. L. Warren, R. R. Mercer, R. Chapman, T. Hulderman et al., Macrophages and skeletal muscle regeneration: a clodronate-containing liposome depletion study, AJP: Regulatory, Integrative and Comparative Physiology, vol.290, issue.6, pp.1488-1495, 2006.
DOI : 10.1152/ajpregu.00465.2005

F. Tacke, D. Alvarez, T. J. Kaplan, C. Jakubzick, R. Spanbroek et al., Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques, Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques, pp.185-194, 2007.
DOI : 10.1172/JCI28549

K. Takeda, T. Tanaka, W. Shi, M. Matsumoto, M. Minami et al., Essential role of Stat6 in IL-4 signalling, Nature, vol.380, issue.6575, pp.627-630, 1996.
DOI : 10.1038/380627a0

J. A. Thomas, C. Pope, D. Wojtacha, A. J. Robson, T. T. Gordon-walker et al., Macrophage therapy for murine liver fibrosis recruits host effector cells improving fibrosis, regeneration, and function, Hepatology, vol.60, issue.6, 2003.
DOI : 10.1002/hep.24315

H. N. Van, N. Lanthier, S. R. Espanol, Q. J. Abarca, R. N. Van et al., Kupffer Cells Influence Parenchymal Invasion and Phenotypic Orientation, but Not the Proliferation, of Liver Progenitor Cells in a Murine Model of Liver Injury, The American Journal of Pathology, vol.179, issue.4, pp.1839-1850, 2011.
DOI : 10.1016/j.ajpath.2011.06.042

L. Varinou, K. Ramsauer, M. Karaghiosoff, T. Kolbe, K. Pfeffer et al., Phosphorylation of the Stat1 Transactivation Domain Is Required for Full-Fledged IFN-??-Dependent Innate Immunity, Immunity, vol.19, issue.6, pp.793-802, 2003.
DOI : 10.1016/S1074-7613(03)00322-4

Y. X. Wang and M. A. Rudnicki, Satellite cells, the engines of muscle repair, Nature Reviews Molecular Cell Biology, vol.12, pp.127-133, 2012.
DOI : 10.1038/nrm3265

J. Wu, S. Yoo, D. Wilcock, J. M. Lytle, P. Y. Leung et al., glial progenitors and microglia/macrophages from the injured spinal cord, Glia, vol.50, pp.410-422, 2010.
DOI : 10.1002/glia.20932

S. Xiang, H. H. Dong, H. F. Liang, S. Q. He, W. Zhang et al., Oval Cell Response Is Attenuated by Depletion of Liver Resident Macrophages in the 2-AAF/Partial Hepatectomy Rat, PLoS ONE, vol.49, issue.4, p.35180, 2012.
DOI : 10.1371/journal.pone.0035180.t001